Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-07T15:24:31.289Z Has data issue: false hasContentIssue false

Reconstructing Extinct Plant Water Use for Understanding Vegetation–Climate Feedbacks: Methods, Synthesis, and a Case Study Using the Paleozoic-Era Medullosan Seed Ferns

Published online by Cambridge University Press:  21 July 2017

Jonathan P. Wilson*
Affiliation:
Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA 19041 USA
Joseph D. White
Affiliation:
Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798–7388 USA
William A. Dimichele
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington D.C., 20013-7012 USA
Michael T. Hren
Affiliation:
Center for Integrative Geosciences, University of Connecticut, Beach Hall 207, U-1045, 354 Mansfield Road, Storrs, CT, 06269 USA
Christopher J. Poulsen
Affiliation:
Department of Earth and Environmental Sciences, University of Michigan, 2534 C.C. Little Building, 1100 North University Ave., Ann Arbor, MI, 48109-1005 USA
Jennifer C. McElwain
Affiliation:
Earth Institute, School of Biology and Environmental Science, University College Dublin, Stillorgan Road, Belfield, Dublin 4, Ireland
Isabel P. Montañez*
Affiliation:
Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
*
Corresponding authors
Corresponding authors
Get access

Abstract

Vegetation affects feedbacks in Earth's hydrologic system, but is constrained by physiological adaptations. In extant ecosystems, the mechanisms controlling plant water used can be measured experimentally; for extinct plants in the recent geological past, water use can be inferred from nearest living relatives, assuming minimal evolutionary change. In deep time, where no close living relatives exist, fossil material provides the only information for inferring plant water use. However, mechanistic models for extinct plant water use must be built on first principles and tested on extant plants. Plants serve as a conduit for water movement from the soil to the atmosphere, constrained by tissue-level construction and gross architecture. No single feature, such as stomata or veins, encompasses enough of the complexity underpinning water-use physiology to serve as the basis of a model of functional water use in all (or perhaps any) extinct plants. Rather, a “functional whole plant” model must be used. To understand the interplay between plant and atmosphere, water use in relation to environmental conditions is investigated in an extinct plant, the seed fern Medullosa ((Division Pteridospermatophyta), by reviewing methods for reconstructing physiological variables such as leaf and stem hydraulic capacity, photosynthetic rate, transpiration rate, stomatal conductance, and albedo. Medullosans had the potential for extremely high photosynthetic and assimilation rates, water transport, stomatal conductance, and transpiration—rates comparable to later angiosperms. When these high growth and gas exchange rates of medullosans are combined with the unique atmospheric gas composition of the late Paleozoic atmosphere, complex vegetation-environmental feedbacks are expected despite their basal phylogenetic position relative to post-Paleozoic seed plants.

Type
Research Article
Copyright
Copyright © 2015 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, E. A., and Long, S. P. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant reproduction to rising CO2 . New Phytologist, 165:351372.Google Scholar
Algeo, T. J., and Scheckler, S. E. 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society B-Biological Sciences, 353:113128.Google Scholar
Andrews, H. N., and Kernen, J. A. 1946. Contributions to our knowledge of American Carboniferous floras. VIII. Another Medullosa from Iowa. Annals of the Missouri Botanical Garden, 33:141146.CrossRefGoogle Scholar
Andrews, H. N., and Mamay, S. H. 1953. Some American Medullosas. Annals of the Missouri Botanical Garden, 40:183209.Google Scholar
Barthlott, W., and Neinhuis, C. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202:18.Google Scholar
Baas, P., Schmid, R., and Van Heuven, B. J. 1986. Wood anatomy of Pinus longaeva (Bristlecone Pine) and the sustained length-on-age increase of its tracheids. IAWA Journal, 7:221228.CrossRefGoogle Scholar
Barbour, M. M. 2007. Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology, 34:8394.Google Scholar
Barbour, M. M., Roden, J. S., Farquhar, G. D., and Ehleringer, J. R. 2004. Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia, 138:426435.Google Scholar
Basinger, J. F., Rothwell, G. W., and Stewart, W. N. 1974. Cauline vasculature and leaf trace production in medullosan pteridosperms. American Journal of Botany, 61:10021015.CrossRefGoogle Scholar
Beeler, H. E. 1983. Anatomy and frond architecture of Neuropteris ovata and Neuropteris scheuchzeri from the upper Pennsylvanian of the Appalachian Basin. Canadian Journal of Botany-Revue Canadienne De Botanique, 61:23522368.Google Scholar
Beerling, D. J., Chaloner, W. G., Huntley, B., Pearson, J. A., and Tooley, M. J. 1993. Stomatal density responds to the glacial cycle of environmental change. Proceedings of the Royal Society B: Biological Sciences, 251:133138.Google Scholar
Beerling, D. J., and Chaloner, W. G. 1993. Stomatal density as an indicator of atmospheric CO2 concentration. Holocene, 2:7178.CrossRefGoogle Scholar
Beerling, D. J., McElwain, J. C., and Osborne, C. P. 1998. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations: Journal of Experimental Botany, 49:16031607.Google Scholar
Berry, J. A., Beerling, D. J., and Franks, P. J. 2010. Stomata: key players in the earth system, past and present. Current Opinion in Plant Biology, 13:233240.Google Scholar
Betts, R. A., Boucher, O., Collins, M., Cox, P. M., Falloon, P. D., Gedney, N., Hemming, D. L., Huntingford, C., Jones, C. D., Sexton, D. M. H., and Webb, M. J. 2007. Projected increase in continental runoff due to plan responses to increasing carbon dioxide. Nature, 448:10371041.Google Scholar
Boyce, C. K., and Knoll, A. H. 2002. Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology, 28:70100.2.0.CO;2>CrossRefGoogle Scholar
Boyce, C. K., Brodribb, T. J., Feild, T. S., and Zwieniecki, M.A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences, 276:17711776.CrossRefGoogle ScholarPubMed
Boyce, C. K., Lee, J. E., Feild, T. S., Brodribb, T. J., and Zwieniecki, M. A. 2010. Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity. Annals of the Missouri Botanical Garden, 97:527540.Google Scholar
Boyce, C. K., and Lee, J-E. 2010. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of the Royal Society B: Biological Sciences, doi: 10.1098/rspb.2010.0485.Google Scholar
Brongniart, A. 1828. Prodrome d'une Histoire des Végétaux Fossiles. Grand Dictionnaire d'Histoire Naturelle, Paris, F. G. Levrault, 57:170212.Google Scholar
Brodersen, C., Jansen, S., Choat, B., Rico, C., and Pittermann, J. 2014. Cavitation resistance in seedless vascular plants: The structure and function of interconduit pit membranes. Plant Physiology, 165:895904.Google Scholar
Brodersen, C. R., and McElrone, A. J. 2013. Maintenance of xylem network transport capacity: A review of embolism repair in vascular plants. Frontiers in Plant Science, 4:108.Google Scholar
Brodersen, C. R., McElrone, A. J., Choat, B., Matthews, M. A., and Shackel, K. A. 2010. The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiology, 154:10881095.Google Scholar
Brodribb, T. J., Feild, T. S., and Jordan, G. J. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144:18901898.Google Scholar
Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., Schulze, E.-D. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia, 108:583595.CrossRefGoogle ScholarPubMed
Casson, S. A., and Hetherington, A. M. 2010. Environmental regulation of stomatal development. Current Opinion in Plant Biology, 13:9095.CrossRefGoogle ScholarPubMed
Cernusak, L. A., Winter, K., Aranda, J., and Turner, B. L. 2008. Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ13C and δ18O) of seedlings grown in a tropical environment. Plant Physiology, 148:642659.Google Scholar
Cichan, M. A. 1986. Conductance in the wood of selected Carboniferous plants. Paleobiology, 12:302310.Google Scholar
Cichan, M. A., and Taylor, T. N. 1984. A method for determining tracheid lengths in petrified wood by analysis of cross-sections. Annals of Botany, 53:219226.CrossRefGoogle Scholar
Choat, B., Ball, M., Luly, J., and Holtum, J. 2003. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 131:4148.CrossRefGoogle ScholarPubMed
Choat, B., Brodie, T. W., Cobb, A. R., Zwieniecki, M. A., and Holbrook, N. M. 2006. Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. American Journal of Botany, 93:9931000.Google Scholar
Choat, B., Cobb, A. R., and Jansen, S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist, 177:608626.CrossRefGoogle ScholarPubMed
Clearwater, M. J., and Clark, C. J. 2003. In vivo magnetic resonance imaging of xylem vessel contents in woody lianas. Plant, Cell and Environment, 26:12051214.Google Scholar
Cleal, C. J., and Shute, C. H. 2003. Systematics of the late Carboniferous medullosalean pteridosperm Laveineopteris and its associated Cyclopteris leaves. Palaeontology, 46:353411.Google Scholar
Cleal, C. J., Shute, C. H., and Zodrow, E. L.E.L. 1990. A revised taxonomy for Palaeozoic neuropterid foliage. Taxon, 39:486492.Google Scholar
Cleal, C. J., and Thomas, B. A. 2005. Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present? Geobiology, 3:1331.Google Scholar
Comstock, J. P., and Sperry, J. S. 2000. Theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytologist, 148:195218.Google Scholar
Craig, H., and Gordon, L. I. 1965. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere, p. 9130 In Tongiorgi, E. (ed.), Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto, Italy.Google Scholar
Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden, 72:716793.CrossRefGoogle Scholar
Damour, G., Simonneau, T., Cochard, H., and Urban, L. 2010. An overview of models of stomatal conductance at the leaf level. Plant, Cell and Environment, 33:14191438.Google Scholar
Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33:507559.Google Scholar
De Boer, H. J., Lammertsma, E. I., Wagner-Cremer, F., Dilcher, D. L., Wassen, M. J., and Dekker, S. C. 2011. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2 . Proceedings of the National Academy of Sciences, 108:40414046.Google Scholar
Defries, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D., and Townshend, J. 2002. Carbon emissions from tropical deforestration and regrowth based on satellite observations for the 1980s and 1990s. Proceedings of the National Academy of Sciences, 99:1425614261.Google Scholar
Delevoryas, T. 1955. The Medullosae: structure and relationships. Palaeontographica B, 97:114167.Google Scholar
Dennis, R. L., and Eggert, D. A. 1978. Parasporotheca gen. nov., and its bearing on interpretation of morphology of permineralized medullosan pollen organs. Botanical Gazette, 139:117139.Google Scholar
DiMichele, W. A., Cecil, B., Montañez, I. P., and Falcon-Lang, H. 2010. Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea. International Journal of Coal Geology, 83:329344.Google Scholar
DiMichele, W. A., Kerp, H., Tabor, N. J., and Looy, C. V. 2008. Revisiting the so-called “Paleophytic-Mesophytic” transition in equatorial Pangea: vegetational integrity and climatic tracking. Palaeogeography, Palaeoclimatology. Palaeoecology, 268:152163.CrossRefGoogle Scholar
DiMichele, W. A., Montañez, I. P., Poulsen, C. J., and Tabor, N. J. 2009. Vegetation-climate feedbacks and regime shifts in the Late Paleozoic ice age earth. Geobiology, 7:200226.Google Scholar
DiMichele, W. A., Tabor, N. J., Chaney, D. S., and Nelson, W. J. 2006. From wetlands to wetspots: the fate and significance of Carboniferous elements in early Permian coastal plain floras of north-central Texas, p. 223248 In Greb, S. and DiMichele, W. A. (eds.), Wetlands Through Time. Geological Society of America Special Publications 299, Boulder, CO.Google Scholar
Dow, G. J., Bergmann, D. C., and Berry, J. A. 2014. An integrated model of stomatal development and leaf physiology. New Phytologist, 201:12181226.Google Scholar
Doyle, J. A. 2006. Seed ferns and the origin of angiosperms. Journal of the Torrey Botanical Society, 133:169209.Google Scholar
Drinnan, A. N., and Crane, P. R. 1994. A synopsis of medullosan pollen organs from the middle Pennsylvanian Mazon-Creek Flora of northeastern Illinois, USA. Review of Palaeobotany and Palynology, 80:235257.Google Scholar
Dunn, M. T. 2006. A review of permineralized seed fern stems of the Upper Paleozoic. Journal of the Torrey Botanical Society, 133:2032.Google Scholar
Dunn, M. T., Krings, M., Mapes, G., Rothwell, G. W., Mapes, R. H., and Keqin, S. 2003. Medullosa steinii sp nov., a seed fern vine from the upper Mississippian. Review of Palaeobotany and Palynology, 124:307324.Google Scholar
Edwards, D., Kerp, H., and Hass, H. 1998. Stomata in early land plants: an anatomical and ecophysiological approach. Journal of Experimental Botany, 49:255278.CrossRefGoogle Scholar
Eggert, D. A., and Rothwell, G. W. 1979. Stewartiotheca gen. n. and the nature and origin of complex permineralized medullosan pollen organs. American Journal of Botany, 66:851866.Google Scholar
Falcon-Lang, H. J. 2003. Response of Late Carboniferous tropical vegetation to transgressive–regressive rhythms at Joggins, Nova Scotia. Journal of the Geological Society of London, 160:643648.Google Scholar
Falcon-Lang, H. J. 2004. Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms. Geology, 32:689692.Google Scholar
Falcon-Lang, H. J., Benton, M. J., Braddy, S. J., and Davies, S. J. 2006. The Pennsylvanian tropical biome reconstructed from the Joggins Formation of Nova Scotia, Canada. Journal of the Geological Society of London, 163:561576.CrossRefGoogle Scholar
Falcon-Lang, H. J., and DiMichele, W. A. 2010. What happened to the coal forests during Pennsylvanian glacial phases? Palaios, 25:611617.Google Scholar
Falcon-Lang, H. J., Nelson, W. J., Elrick, S., Looy, C. V., Ames, P. R., and DiMichele, W. A. 2009. Incised channel-fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands. Geology, 37:923926.Google Scholar
Farquhar, G. D., Cernusak, L. A., and Barnes, B. 2007. Heavy water fractionation during transpiration. Plant Physiology, 143:1118.CrossRefGoogle ScholarPubMed
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989a. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40:503537.Google Scholar
Farquhar, G. D., Hubick, K. T., Condon, A. G., and Richards, R. A. 1989b. Carbon isotope fractionation and plant water-use efficiency, p. 2140 In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A. (eds.), Stable Isotopes in Ecological Research. Springer-Verlag, New York.Google Scholar
Farquhar, G. D., O'Leary, M. H., and Berry, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9:121137.Google Scholar
Farquhar, G. D., and Sharkey, T. D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33:317345.Google Scholar
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., and Washington, W. M. 2005. The importance of land-cover change in simulating future climates. Science, 310:16741678.Google Scholar
Feild, T. S., Brodribb, T. J., Iglesias, A., Chatelet, D. S., Baresch, A., Upchurch, G. R., Gomez, B., Mohr, B. A. R., Coiffard, C., Kvacek, J., and Jaramillo, C. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proceedings of the National Academy of Sciences, 108:83638366.Google Scholar
Fielding, C. R., Frank, T. D., and Isbell, J. L. (eds.). 2008. Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Publications 441. Boulder, CO.Google Scholar
Flanagan, L. B., Comstock, J. P., and Ehleringer, J. R. 1991. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology, 96:588596.CrossRefGoogle ScholarPubMed
Flanagan, L. B., and Ehleringer, J. R. 1991. Effects of mild water stress and diurnal changes in temperature and humidity on the stable oxygen and hydrogen isotopic composition of leaf water in Cornus stolonifera L. Plant Physiology, 97:298305.Google Scholar
Franks, P. J. 2004. Stomatal control and hydraulic conductance, with special reference to tall trees. Tree Physiology, 24:865878.Google Scholar
Franks, P. J., Royer, D. L., Beerling, D. J., van de Water, P. K., Cantrill, D. J., Barbour, M. M., and Berry, J. A. 2014. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophysical Research Letters, 41:46854694.Google Scholar
Galtier, J. 1988. Morphology and phylogenetic relationships of early pteridosperms, p. 135176 In Beck, C. (ed.), Origin and Evolution of Gymnosperms: Columbia University Press, New York.Google Scholar
Gastaldo, R. A., Stevanović-Walls, I. M., Ware, W. N., and Greb, S. F. 2004. Community heterogeneity of Early Pennsylvanian peat mires. Geology, 32:693696.Google Scholar
Gastaldo, R. A., DiMichele, W. A., and Pfefferkorn, H. W. 1996. Out of the icehouse into the greenhouse: a Late Paleozoic analog for modern global vegetational change. GSA Today, 6:17.Google Scholar
Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., and Scott, P. A. 2006. Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439:853–838.Google Scholar
Gleason, S. M., Blackman, C. J., Cook, A. M., Laws, C. A., and Estoby, M. 2014. Whole-plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats. Tree Physiology, 34:275284.Google Scholar
Grams, T. E., Kozovits, A. R., Haberle, K. H., Matyssek, R., and Dawson, T. E. 2007. Combining δ13C and δ18O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Plant Cell and Environment, 30:10231034.Google Scholar
Hacke, U. G., and Sperry, J. S. 2001. Functional and ecological xylem anatomy. Perspectives in Plant Ecology Evolution and Systematics, 4:97115.Google Scholar
Hacke, U. G., and Sperry, J. S. 2003. Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo . Plant Cell and Environment, 26:303311.Google Scholar
Hacke, U. G., Sperry, J. S., and Pittermann, J. 2000. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1:3141.Google Scholar
Hacke, U. G., Sperry, J. S., and Pittermann, J. 2004. Analysis of circular bordered pit function—II. Gymnosperm tracheids with torus-margo pit membranes. American Journal of Botany, 91:386400.Google Scholar
Hacke, U. G., Sperry, J. S., Wheeler, J. K., and Castro, L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26:689701.Google Scholar
Hacke, U. G., Stiller, V., Sperry, J. S., Pittermann, J., and McCulloh, K. A. 2001. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiology, 125:779786.Google Scholar
Hamer, J. J., and Rothwell, G. W. 1988. The vegetative structure of Medullosa endocentrica (Pteridospermopsida). Canadian Journal of Botany-Revue Canadienne De Botanique, 66:375387.Google Scholar
Haworth, M., Elliott-Kingston, C., McElwain, J. C. 2013. Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants. Oecologia, 171:7182.Google Scholar
Hetherington, A. M., and Woodward, F. I. 2003. The role of stomata in sensing and driving environmental change. Nature, 424:901908.Google Scholar
Hilton, J., and Bateman, R. M. 2006. Pteridosperms are the backbone of seed-plant phylogeny. Journal of the Torrey Botanical Society, 133:119168.Google Scholar
Holloway, J. P. 1969. The effects of superficial wax on leaf wettability. Annals of Applied Biology, 63:145153.Google Scholar
Horton, D. E., Poulsen, C. J., Montañez, I. P., and Dimichele, W.A. 2012. Eccentricity-paced late Paleozoic climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 331–332:150161.Google Scholar
Hren, M. T., Pagani, M., and Brandon, M. 2010. Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada. Geology, 38:710.Google Scholar
Jansen, S., Choat, B., and Pletsers, A. 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96:409419.Google Scholar
Keitel, C., Matzarakis, A., Rennenberg, H., and Gessler, A. 2006. Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant, Cell and Environment, 29:14921507.Google Scholar
Kenrick, P., and Strullu-Derrien, C. 2014. The origin and early evolution of roots. Plant Physiology, 166:570580.CrossRefGoogle ScholarPubMed
Khalvati, M. A., Hu, Y., Mozafar, A., and Schmidhalter, U. 2005. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology, 7:706712.Google Scholar
Krings, M., Kerp, H., Taylor, T. N., and Taylor, E. L. 2003. How Paleozoic vines and lianas got off the ground: on scrambling and climbing Carboniferous–early Permian pteridosperms. The Botanical Review, 69:204224.CrossRefGoogle Scholar
Krings, M., and Kerp, H. 2006. Neuropteris attenuata, a narrow-stemmed, leaning or lianescent seed fern from the Upper Pennsylvanian of Lower Saxony, Germany. Flora—Morphology, Distribution, Functional Ecology of Plants 201:233239.Google Scholar
Krings, M., Klavins, S. D., Taylor, T. N., Taylor, E. L., Serbet, R., and Kerp, H. 2006. Frond architecture of Odontopteris brardii (Pteridospermopsida, ? Medullosales): new evidence from the Upper Pennsylvanian of Missouri, USA. Journal of the Torrey Botanical Society, 133:3345.Google Scholar
Kuromori, T., Sugimoto, E., and Shinozaki, K. 2014. Intertissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiology, 164:15871592.Google Scholar
Kurschner, W. M., Vanderburgh, J., Visscher, H., and Dilcher, D. L. 1996. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Marine Micropaleontology, 27:299312.CrossRefGoogle Scholar
Lake, J. A., Quick, W. P., Beerling, D. J., and Woodward, F. I. 2001. Signals from mature to new leaves. Nature, 411:154.CrossRefGoogle ScholarPubMed
Lammertsma, E. I., De Boer, H. J., Dekker, S. C., Dilcher, D. L., Lotter, A. F. and Wagner-Cremer, F. 2011. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences, 108:40354040.Google Scholar
Lancashire, J. R., and Ennos, A. R. 2002. Modelling the hydrodynamic resistance of bordered pits. Journal of Experimental Botany, 53:14851493.CrossRefGoogle ScholarPubMed
Laveine, J.-P. 1986. The size of the frond in the genus Alethopteris Sternberg (Pteridospermopsida, Carboniferous). Geobios, 19:4959.CrossRefGoogle Scholar
Laveine, J.-P., and Behlis, A. 2007. Frond architecture of the seed fern Macroneuropteris scheuchzeri, based on Pennsylvanian specimens from the Northern France coalfield. Palaeontographica B, 277:141.Google Scholar
Laveine, J.-P., and Dufour, F. 2012. The bifurcate “outer-inner” semi-pinnate frond of the Permo-Pennsylvanian seed-fern Neurodontopteris auriculata, type species of the genus Neurodontopteris. Palaeontographica B, 289:75137.Google Scholar
Lawrence, D., and Vandecar, K. 2015. Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 5:2736.CrossRefGoogle Scholar
Lee, J.-E., Linter, B. R., Neelin, J. D., Jiang, X., Gentine, P., Boyce, C. K., Fisher, J. B., Perron, J. T., Kubar, T. L., Lee, J., and Worden, J. 2012. Reduction of tropical land region precipitation variability via transpiration. Geophysical Research Letters, 39:L19704.Google Scholar
Loepfe, L., Martinez-Vilalta, J., Piñol, J., and Mencuccini, M. 2007. The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247:788803.Google Scholar
Majoube, M. 1971 Fractionnement en oxygene-18 et en deuterium entre l'eau et sa vapeur. Journal de Chimie Physique, 58:14231436.Google Scholar
Malone, S. R., Mayeux, H. S., Johnson, H. B., and Polley, H. W. 1993. Stomatal density and aperture length in four plant species grown across a subambient CO2 . American Journal of Botany, 80:14131418.Google Scholar
Mapes, G. 1979. New synangium of presumed medullosan affinities [Abstract]. Ohio Journal of Science, 79:15.Google Scholar
Mapes, G., and Rothwell, G. W. 1980. Quaestora amplecta gen. et sp. nov., a structurally simple medullosan stem from the Upper Mississippian of Arkansas. American Journal of Botany, 67:636647.Google Scholar
Masselter, T., Rowe, N. P., and Speck, T. 2007. Biomechanical reconstruction of the carboniferous seed fern Lyginopteris oldhamia: Implications for growth form reconstruction and habit. International Journal of Plant Sciences, 168:11771189.Google Scholar
McCulloh, K. A., and Sperry, J. S. 2005. Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiology, 25:257267.Google Scholar
McCully, M. E. 1999. Root xylem embolisms and refilling. Relation to water potentials of soil, roots, and leaves, and osmotic potentials of root xylem sap. Plant Physiology, 119:10011008.Google Scholar
McElwain, J. C., and Chaloner, W. G. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Annals of Botany, 76:389395.CrossRefGoogle Scholar
McElwain, J. C., and Chaloner, W. G. 1996. The fossil cuticle as skeletal record of environmental change. Palaios, 11:376388.CrossRefGoogle Scholar
Melcher, P. J., Holbrook, N. M., Burns, M. J., Zwieniecki, M. A., Cobb, A.R., Brodribb, T. J., Choat, B., and Sack, L. 2012. Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods in Ecology and Evolution, 3:685694.CrossRefGoogle Scholar
Meyer-Berthaud, B., Scheckler, S. E., and Bousquet, J.-L. 2000. The development of Archaeopteris: new evolutionary characters from the structural analysis of an early Famennian trunk from southeast Morocco. American Journal of Botany, 87:456468.Google Scholar
Mintz, J. S., Driese, S. G., and White, J. D. 2010. Environmental and ecological variability of middle Devonian (Givetian) forests in Appalachian Basin paleosols, New York, United States. Palaios, 25:8596.Google Scholar
Montañez, I., Tabor, N., Niemeier, D., DiMichele, W. A. Frank, T., Fielding, C., Isbell, J., Birgenheier, L., and Rygel, M. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science, 315:8792.Google Scholar
Montañez, I. P., and Poulsen, C. J. 2013. The Late Paleozoic Ice Age: An evolving paradigm. Annual Reviews of Earth and Planetary Sciences, 41:1333.Google Scholar
Moreno-Gutierrez, C., Barbera, G. C., Nicolas, E., De Luis, M., Castillo, V. M., Martinez-Fernandez, F., and Querejeta, J. I. 2011. Leaf δ18O of remaining trees is affected by thinning intensity in a semiarid pine forest. Plant, Cell and Environment, 34:10091019.Google Scholar
Moreno-Gutierrez, C., Dawson, T. E., Nicolas, E., and Ignacio Querejeta, J. 2012. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 196:489496.Google Scholar
Nishida, H. 1994. Morphology and the evolution of Cycadeoidales. Journal of Plant Research, 107:479492.Google Scholar
Noblin, X., Mahadevan, L., Coomaraswamy, I. A., Weitz, D. A., Holbrook, N. M., and Zwieniecki, M. A. 2008. Optimal vein density in artificial and real leaves. Proceedings of the National Academy of Sciences, 105:91409144.Google Scholar
Nobre, P., Malagutti, M., Urbano, D., de Almeida, R. A. F., and Giarolla, E. 2009. Amazon deforestation and climate change in a coupled model simulation. Journal of Climate, 22:56865697.Google Scholar
Nugent, K. A., and Matthews, H. D. 2012. Drivers of future northern latitude runoff change. Atmosphere-Ocean, 50:197206.CrossRefGoogle Scholar
Opluštil, S., Pšenička, J., Libertín, M., Bashforth, A. R., Šimůnek, Z., Drábková, J., and Dašková, J. 2009. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic. Review of Palaeobotany and Palynology, 155:234274.Google Scholar
Pfefferkorn, H. W., Gastaldo, R. A., DiMichele, W. A., and Phillips, T. L. 2008. Pennsylvanian tropical floras from the United States as a record of changing climate, p. 305316 In Fielding, C. R., Frank, T. D., and Isbell, J. L. (eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Publications 441. Boulder, CO.Google Scholar
Pfefferkorn, H., Gillespie, W. H., Resnick, D. A., and Scheihing, M. H. 1984. Reconstruction and architecture of medullosan pteridosperms (Pennsylvanian). The Mosasaur, 2:18.Google Scholar
Pfefferkorn, H. W., and Thomson, M. C. 1982. Changes in dominance patterns in Upper Carboniferous plant-fossil assemblages. Geology, 10:641644.Google Scholar
Phillips, T. L., Peppers, R. A., and DiMichele, W. A. 1985. Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: environmental inferences. International Journal of Coal Geology, 5:43109.Google Scholar
Pillitteri, L. J., and Dong, J. 2013. Stomatal Development in Arabidopsis. The Arabidopsis Book: e0162. doi: http://dx.doi.org/10.1199/tab.0162.Google Scholar
Pittermann, J., Choat, B., Jansen, S., Stuart, S. A., Lynn, L., and Dawson, T. E. 2010. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: The evolution of pit membrane form and function. Plant Physiology, 153:19191931.Google Scholar
Pittermann, J., Limm, E., Rico, C., and Christman, M. A. 2011. Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns. New Phytologist, 192:449461.Google Scholar
Pittermann, J., Sperry, J. S., Hacke, U. G., Wheeler, J. K., and Sikkema, E. H. 2005. Torus-margo pits help conifers compete with angiosperms. Science, 310:19241924.Google Scholar
Pittermann, J., Sperry, J. S., Hacke, U. G., Wheeler, J. K., and Sikkema, E. H. 2006. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. American Journal of Botany, 93:12651273.Google Scholar
Plotnick, R. E., Kenig, F., Scott, A., Glasspool, I., Eble, C. F., and Lang, W. J. 2009. Pennsylvanian paleokarst and cave fills from northern Illinois, USA: a window into late Carboniferous environments and landscapes. Palaios, 24:627637.Google Scholar
Pockman, W. T., and Sperry, J. S. 1997. Freezing-induced xylem cavitation and the northern limit of Larrea tridentata . Oecologia, 109:1927.Google Scholar
Pockman, W. T., and Sperry, J. S. 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. American Journal of Botany, 87:12871299.Google Scholar
Poulsen, C. J., Pollard, D., Montañez, I. P., and Rowley, D. 2007. Late Paleozoic tropical climate response to Gondwanan deglaciation. Geology, 35:771774.Google Scholar
Pryor, J. S. 1990. Delimiting species among permineralized medullosan pteridosperms—a plant bearing Alethopteris fronds from the upper Pennsylvanian of the Appalachian Basin. Canadian Journal of Botany-Revue Canadienne De Botanique, 68:184192.Google Scholar
Raven, J. A. 2001. Selection pressures on stomatal evolution. New Phytologist, 153:371386.Google Scholar
Raven, J. A., and Edwards, D. 2001. Roots: evolutionary origins and biogeochemical significance. Journal of Experimental Botany, 52:381401.Google Scholar
Rockwell, F. E., Wheeler, J. K., and Holbrook, N. M. 2014. Cavitation and its discontents: opportunities for resolving current controversies. Plant Physiology, 164:16491660.Google Scholar
Roden, J. S., and Farquhar, G. D. 2012. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings. Tree Physiology, 32:490503.Google Scholar
Rössler, R. 2006. Two remarkable Permian petrified forests: correlation, comparison and significance, p. 3963 In Lucas, S. G., Cassinis, G., and Schneider, J. W. (eds.), 2006. Non-Marine Permian Biostratigraphy and Biochronology. Geological Society London Special Publications 265.Google Scholar
Rothwell, G. W., and Whiteside, K. L. 1972. Structure of medullosan rooting systems. American Journal of Botany, 59:663.Google Scholar
Rowe, N. P., and Speck, T. 1998. Biomechanics of plant growth forms: The trouble with fossil plants. Review of Palaeobotany and Palynology, 102:4362.Google Scholar
Rowe, N. P., and Speck, T. 2004. Hydraulics and mechanics of plants: novelty, innovation, and evolution p. 297326 In Helmsley, A. R. and Poole, I., (eds), The Evolution of Plant Physiology. Elsevier, London.Google Scholar
Rowe, N., and Speck, T. 2005. Plant growth forms: an ecological and evolutionary perspective. New Phytologist, 166:6172.Google Scholar
Rowe, N.P., Speck, T., and Galtier, J. 1993. Biomechanical analysis of a Paleozoic gymnosperm stem. Proceedings of the Royal Society of London Series B-Biological Sciences, 252:1928.Google Scholar
Sack, L., and Holbrook, N. M. 2006. Leaf hydraulics. Annual Review of Plant Biology, 57:361381.Google Scholar
Salati, E. 1987. The forest and the hydrological cycle, p. 273296 In Dickinson, R. E. (ed.), The Geophysiology of Amazonia. John Wiley, New York.Google Scholar
Salleo, S., Gullo, M. A. L., Paoli, D. D., and Zippo, M. 1996. Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: A possible mechanism. New Phytologist, 132:4756.Google Scholar
Scheenen, T. W. J., Vergeldt, F. J., Heemskerk, A. M., and van As, H. 2007. Intact plant magnetic resonance imaging to study dynamics in longdistance sap flow and flow-conducting surface area. Plant Physiology, 144:11571165.Google Scholar
Schimmelmann, A., Sessions, A. L., and Mastalerz, M. 2006. Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Annual Review of Earth and Planetary Sciences, 34:501–33.Google Scholar
Schneidegger, Y., Saurer, M., Bahn, M., and Siegwolf, R. 2000. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia, 125:350357.CrossRefGoogle Scholar
Scott, D. H. 1899. On the structure and affinities of fossil plants from the Palaeozoic rocks. III. On Medullosa anglica, a new representative of the Cycadofilices. Philosophical Transactions of the Royal Society of London-Series B, 191:81126.Google Scholar
Scott, D. H. 1914. On Medullosa pusilla . Proceedings of the Royal Society of London-Series B, 87:221228.Google Scholar
Secchi, F., and Zwieniecki, M. A. 2011. Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant, Cell and Environment, 34:514524.Google Scholar
Sellers, P. J., Bounoua, L., Collatz, G. J., Randall, D. A., Dazlich, D. A., Los, S. O., Berry, J. A., Fung, I., Tucker, C. J., Field, C. B., and Jensen, T. G. 1996. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271:14021406.CrossRefGoogle Scholar
Serbet, R., Taylor, T. N., and Taylor, E. L. 2006. On a new medullosan pollen organ from the Pennsylvanian of North America. Review of Palaeobotany and Palynology, 142:219227.Google Scholar
Sperry, J. S. 1986. The form and function of the xylem. Biorheology, 23:198198.Google Scholar
Sperry, J. S. 2000. Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology, 104:1323.Google Scholar
Sperry, J. S. 2003. Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164:S115S127.Google Scholar
Sperry, J. S., and Hacke, U. G. 2004. Analysis of circular bordered pit function – I. Angiosperm vessels with homogenous pit membranes. American Journal of Botany, 91:369385.Google Scholar
Sperry, J. S., Hacke, U. G., Feild, T. S., Sano, Y., and Sikkema, E. H. 2007. Hydraulic consequences of vessel evolution in angiosperms. International Journal of Plant Sciences, 168:11271139.Google Scholar
Sperry, J. S., Hacke, U. G., Oren, R., and Comstock, J. P. 2002. Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25:251263.Google Scholar
Sperry, J. S., Hacke, U. G., and Pittermann, J. 2006. Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93:14901500.Google Scholar
Sperry, J. S., Hacke, U. G., and Wheeler, J. K. 2005. Comparative analysis of end wall resistivity in xylem conduits. Plant, Cell and Environment, 28:456465.Google Scholar
Sperry, J. S., Meinzer, F. C., and McCulloh, K. A. 2008. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell and Environment, 31:632645.Google Scholar
Sperry, J. S., Nichols, K. L., Sullivan, J. E. M., and Eastlack, S. E. 1994. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology, 75:17361752.Google Scholar
Sperry, J. S., and Tyree, M. T. 1988. Mechanism of water stress-induced xylem embolism. Plant Physiology, 88:581587.Google Scholar
Steinthorsdottir, M., Woodward, F. I., Surlyk, F., and McElwain, J. C. 2012. Deep-time evidence of a link between elevated CO2 concentrations and perturbations in the hydrological cycle via drop in plant transpiration. Geology, 40:815818.Google Scholar
Steidtmann, W. E. 1937. A preliminary report on the anatomy and affinities of Medullosa noei sp. nov. from the Pennsylvanian of Illinois. American Journal of Botany, 24:124125.Google Scholar
Steidtmann, W. E. 1944. The anatomy and affinities of Medullosa noei Steidtmann, and associated foliage, roots, and seeds. Contributions from the Museum of Paleontology University of Michigan, 6:131166.Google Scholar
Sterzel, J. T. 1918. Die Organischen reste des kulms und rotliegenden der gegend von chemnitz. Abhandlungen der Mathematisch-physischen klasse der Königl. Sächsischen Gesellschaft der Wissenschaften, 5:203315.Google Scholar
Stewart, W., and Delevoryas, T. 1952. Bases for determining relationships among the Medullosaceae. American Journal of Botany, 39:505516.CrossRefGoogle Scholar
Stewart, W. N. 1950. A new species of Medullosa . American Journal of Botany, 37:674674.Google Scholar
Stewart, W. N., and Delevoryas, T. 1956. The medullosan pteridosperms. Botanical Review, 22:4580.Google Scholar
Stidd, B. M. 1981. The current status of medullosan seed ferns. Review of Palaeobotany and Palynology, 32:63101.Google Scholar
Stiller, V., Sperry, J. S., and Lafitte, R. 2005. Embolized conduits of rice (Oryza sativa, Poaceae) refill despite negative xylem pressure. American Journal of Botany, 92:19701974.Google Scholar
Stull, G. W., DiMichele, W. A., Falcon-Lang, H. J., Nelson, W. J., and Elrick, S. 2012. Palaeoecology of Macroneuropteris scheuchzeri, and its implications for resolving the paradox of “xeromorphic” plants in Pennsylvanian wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 331–332:162176.Google Scholar
Tabor, N. J., DiMichele, W. A., Montañez, I. P., and Chaney, D. S. 2013. Late Paleozoic continental warming of a cold tropical basin and floristic change in western Pangea. International Journal of Coal Geology, 119:177186.Google Scholar
Taiz, L., and Zeiger, E. 2002. Plant Physiology. Sinauer Associates, Inc., Sunderland, MA, 690 p.Google Scholar
Taylor, T. N., Taylor, E. L., and Krings, M. 2009. Paleobotany: The Biology and Evolution of Fossil Plants: Academic Press.Google Scholar
Tyree, M. T., and Ewers, F. W. 1991. Tansley Review No. 34. The hydraulic architecture of trees and other woody plants. New Phytologist, 119:345360.Google Scholar
Tyree, M. T., Salleo, S., Nardini, A., Lo Gullo, M. A., and Mosca, R. 1999. Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiology, 120:1121.Google Scholar
Tyree, M. T., and Sperry, J. S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40:1938.Google Scholar
Tyree, M. T., and Zimmermann, M. H. 2002. Xylem Structure and the Ascent of Sap: Springer-Verlag, Berlin.Google Scholar
van den Honert, T. H. 1948. Water transport in plants as a catenary process. Discussions of the Faraday Society, 3:146153.Google Scholar
Van Hoof, T. B., Falcon-Lang, H. J., Hartkopf-Froder, C., and Kerp, H. 2013. Conifer-dominated palynofloras in the middle Pennsylvanian strata of the De Lutte-6 borehole, The Netherlands: Implications for evolution, palaecology and biostratigraphy. Review of Palaeobotany and Palynology, 188:1837.Google Scholar
Wagner, R. H. 1968. Upper Westphalian and Stephanian species of Alethopteris from Europe, Asia Minor and North America. Mededelingen van de Rijks Geologische Dienst Serie C, 3-1 6:1188.Google Scholar
Wagner, F., Dilcher, D. L., and Visscher, H. 2005. Stomatal frequency responses in hardwood-swamp vegetation from Florida during a 60-year continuous CO2 increase. American Journal of Botany, 92:690695.Google Scholar
Wang, S., and Schiefelbein, J. 2014. Regulation of cell fate determination in plants. Frontiers in Plant Science, 5:12.Google Scholar
Werth, D., and Avissar, R. 2002. The local and global effects of Amazon deforestation. Journal of Geophysical Research, 107(D20):LBA 55-1LBA 55-8.Google Scholar
Wheeler, J. K., Sperry, J. S., Hacke, U. G., and Hoang, N. 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell and Environment, 28:800812.Google Scholar
Williamson, W. C. 1887. A Monograph on the Morphology and Histology of Stigmaria ficoides . The Palaeontographical Society, London, 62 p.Google Scholar
Wilson, J. P., and Fischer, W. W. 2011. Geochemical support for a climbing habit within the Paleozoic seed fern gcenus Medullosa . International Journal of Plant Sciences, 172:586598.Google Scholar
Wilson, J. P. 2013. Modeling 400 million years of plant hydraulics. The Paleontological Society Papers, 19:175194.CrossRefGoogle Scholar
Wilson, J. P., and Fischer, W. W. 2011. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants. Geobiology, 9:121130.Google Scholar
Wilson, J. P., and Knoll, A. H. 2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology, 36:335355.Google Scholar
Wilson, J. P., Knoll, A. H., Holbrook, N. M., and Marshall, C. R. 2008. Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant. Paleobiology, 34:472493.Google Scholar
Woodward, F. I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327:617618.Google Scholar
Woodward, F. I. 1993. Plant-responses to past concentrations of CO2 . Vegetation, 104:145155.Google Scholar
Woodward, F. I, and Kelly, C. K. 1995. The influence of CO2 concentration on stomatal density. New Phytologist, 131:311327.Google Scholar
Wnuk, C., and Pfefferkorn, H. W. 1984. The life habits and paleoecology of middle Pennsylvanian medullosan pteridosperms based on an in situ assemblage from the Bernice Basin (Sullivan County, Pennsylvania, USA). Review of Paleobotany and Palynology, 41:329351.Google Scholar
Zimmermann, M. H. 1983. Xylem Structure and the Ascent of Sap: Springer-Verlag, Berlin.Google Scholar
Zwieniecki, M. A. and Holbrook, N. M. 2009. Confronting Maxwell's demon: biophysics of xylem embolism repair. Trends in Plant Science, 14:530534.Google Scholar