Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T12:55:42.428Z Has data issue: false hasContentIssue false

The Invertebrate Invasion and Evolution of Mesozoic Soil Ecosystems: The Ichnofossil Record of Ecological Innovations

Published online by Cambridge University Press:  21 July 2017

Stephen T. Hasiotis*
Affiliation:
Department of Geography, Geology, and Anthropology, Indiana State University, 159 Science Building, Terre Haute, IN 47809 USA
Get access

Extract

Mesozoic soil ecosystems are intriguing because they are the products of many unique factors and events in geologic history. One of the most notable events that likely shaped Mesozoic soil ecosystems was the Permo-Triassic extinction. At that time, estimates of 20% of plant species, 50% of tetrapod genera, roughly 60% of insect families, and approximately 91 to 97% of shallow marine life became extinct (e.g., Padian and Clemens, 1985; Raup, 1986; Niklas et al., 1980; Wing and Sues, 1992; Labandeira and Sepkoski, 1993; and references therein). Over the span of the next 180 million years the supercontinent Pangea disassembled and the continents moved toward the configuration we see today (Scotese and Golonka, 1992); the Pangean mega-monsoonal climate pattern deteriorated into more zonal climates through to the Cretaceous (e.g., Parrish et al., 1982; Dubiel et al., 1991; Parrish, 1993); sea-level rose and flooded continental interiors, reaching its second greatest maximum since the Ordovician (e.g., Haq et al., 1987, 1988); and several major evolutionary episodes occurred, including the evolution and diversification of the angiosperms, mammals, birds, and many of the neopteran insects (Lillegraven et al., 1979; Carpenter and Burham, 1985; Friis et al., 1987; Wing and Sues, 1992; Labandeira and Sepkoski, 1993).

Type
Research Article
Copyright
Copyright © 2000 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aber, J. D., and Melillo, J. M. 1991. Terrestrial Ecosystems. Saunders College Publishing, Philadelphia, 429 p.Google Scholar
Anderson, J. M. 1977. The organization of soil animal communities. Ecological Bulletin, 25:1523.Google Scholar
Bakker, R. T. 1978. Dinosaur feeding behavior and the origin of flowering plants. Nature, 274:661663.Google Scholar
Behnke, F. L. 1977. A Natural History of Termites. Charles Scribner's Sons, New York, 118 p.Google Scholar
Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L. (eds.). 1992. Terrestrial ecosystems through Time—evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago, 568 p.Google Scholar
Birkeland, P. W. 1984. Soils and Geomorphology. Oxford University Press, New York, 372 p.Google Scholar
Boucot, A. J. 1990. Evolutionary Paleobiology of Behavior and Coevolution. Elsevier Publishers, Amersterdam, 725 p.Google Scholar
Bouillion, A. 1970. Termites of the Ethiopian region, p. 153238. In Krishna, K. and Weesner, F. M. (eds.), Biology of Termites, Vol. 2., Academic Press, New York.Google Scholar
Bown, T. M., and Kraus, M. J. 1983. Ichnofossils of the Alluvial Willwood Formation (lower Eocene), Bighorn Basin, Northwest Wyoming, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 43:95128.Google Scholar
Bown, T. M., and Kraus, M. J. 1987. Integration of channel and floodplain suites, I. Developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Petrology, 57:587601.Google Scholar
Bracken, B., and Picard, M. D. 1984. Trace fossils from Cretaceous/Tertiary North Horn Formation in central Utah. Journal of Paleontology, 58:477487.Google Scholar
Bromley, R. G. 1996. Trace Fossils: Biology and taphonomy, 2nd edition. Special Topics in Paleontology, no. 3. Unwin Hyman, Ltd., 361 p.CrossRefGoogle Scholar
Bromley, R. G., and Asgaard, U. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology. 28:3980.CrossRefGoogle Scholar
Brown, R. W. 1941. The comb of a wasp nest from the Upper Cretaceous of Utah. American Journal of Science, 239:5456.Google Scholar
Buatois, L. A., and Mangano, M. G. 1995. The paleoenvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: An archetypal subaqueous nonmarine trace fossil assemblage. Ichnos, 4:151161.Google Scholar
Buatois, L. A., Mangano, M. G., Genise, J. F., and Taylor, T. N. 1998. The ichnologic record of continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity. Palaios, 13:217240.Google Scholar
Buatois, L. A., Mangano, M. G., Wu, X., and Guocheng, Z. 1996. Trace fossils from Jurassic lacustrine turbidites of the Anyao Formation (central China) and their environmental and evolutionary significance. Ichnos, 4:287303.Google Scholar
Carpenter, F. M. 1992. Superclass Hexapoda, p. 1655. In Kaesler, R. L., Brosius, E., Kiem, J., and Priesner, J. (eds.), Treatise on Invertebrate Paleontology, Part R, 4(3). Geological Society of America and the University of Kansas, Boulder and Lawrence.Google Scholar
Carpenter, F. M., and Burnham, L. 1985. The geological record of insects. Annual Review of Earth and Planetary Sciences, 13:297314.Google Scholar
Chamberlain, C. K. 1975. Recent Lebensspuren in nonmarine aquatic environments, p. 431458. In Frey, R. W. (ed.), The Study of Trace Fossils, Springer Verlag, New York, 562 p.Google Scholar
Chapman, R. F. 1982. The Insects, Structure and Function. Harvard University Press, Cambridge, 919 p.Google Scholar
Cherry, R. H., and Porter, P. S. 1992. Respiration and behavior of a sugarcane grub, Ligyrus subtropicus (Coleoptera: Scarabaeidae) under flooded conditions. Journal of Entomological Science, 27:7177.Google Scholar
Chin, K., and Gill, B. D. 1996. Dinosaurs, dung beetles, and conifers: Participants in a Cretaceous food web. PALAIOS, 11:280285.Google Scholar
Cloudsley-Thompson, J. L. 1962. Microclimates and the distribution of terrestrial arthropods. Annual Review of Entomology, 7:199222.Google Scholar
Cloudsley-Thompson, J. L. 1988. Evolution and Adaptation of Terrestrial Arthropods. Springer-Verlag, Berlin, 141 p.Google Scholar
Coe, M. 1978. The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. Journal of Arid Environments, 1:7686.CrossRefGoogle Scholar
Colbert, E. H. 1980. Evolution of the Vertebrates—A history of the backboned animals through time. John Wiley and Sons, New York, 510 p.Google Scholar
Costa, G. 1995. Behavioral Adaptations of Desert Animals. Springer-Verlag, Berlin, 198 p.Google Scholar
Crawford, C. S. 1981. Biology of Desert Invertebrates. Springer-Verlag, New York, 314 p.Google Scholar
Crowson, R. A. 1981. The Biology of the Coleoptera. Academic Press, New York, 802 p.Google Scholar
Demko, T. M., and Parrish, J. T. 1998. Paleoclimatic setting of the Upper Jurassic Morrison Formation. Modern Geology, 22:283296.Google Scholar
De Santo, R. S. 1978. Concepts of applied ecology. Heidelberg Science Library, New York, 310 p.Google Scholar
Donovan, S. K. 1994. Insects and other arthropods as trace-makers in non-marine environments and paleoenvironments, p. 200220. In Donovan, S. K. (ed.), The Paleobiology of Trace Fossils. The John Hopkins University Press, Baltimore, 308 p.Google Scholar
Dubiel, R. F., Parrish, J. T., Parrish, J. M., and Good, S. C. 1991. The Pangean megamonsoon—Evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios, 6:347370.CrossRefGoogle Scholar
Dubiel, R. F., Hasiotis, S. T., and Demko, T. M. 1999. Incised valley fills in the lower part of the Chinle Formation, Petrified Forest National Park, Arizona: Regional stratigraphic implications. In Santucci, V. and McClelland, L. (eds.), National Park Service Paleontological Research, 4:7884.Google Scholar
Dubiel, R. F., Skipp, G., and Hasiotis, S. T. 1992. Continental depositional environments and tropical paleosols in the Upper Triassic Chinle Formation, Eagle Basin, western Colorado, p. 2137. In Flores, R. M. (ed.), Field Trip Guidebook for the Mesozoic of the Western Interior, SEPM Theme Meeting, Ft. Collins, CO.Google Scholar
Eisenbeis, G., and Wichard, W. 1987. Atlas on the biology of soil arthropods, 2nd edition. Springer-Verlag, Berlin, 437 p.Google Scholar
Eisner, T. 1970. Chemical defense against predation in arthropods, p. 157217. In Sondheimer, E. and Simone, J. B. (eds.), Chemical Ecology. Academic Press, New York.CrossRefGoogle Scholar
Ekdale, A. A. and Picard, M. D. 1985. Trace fossils in a Jurassic eolianite, Entrada Sandstone, Utah, U.S.A., p. 312. In Curran, H. A. (ed.), Biogenic structures: Their use in interpreting depositional environments. SEPM Special Publication Number 35. The Society of Economic Paleontologist and Mineralogists, Oklahoma, 347 p.Google Scholar
Elias, S. A. 1994. Quaternary Insects and their Environments. Smithsonian Institute Press, Washington, 284 p.Google Scholar
Elliot, D. K., and Nations, J. D. 1998. Bee burrows in the Late Cretaceous (Late Cenomanian) Dakota Formation, northeastern Arizona. Ichnos, 5:243253.Google Scholar
Evans, H. E., and Eberhard, M. J. W. 1970. The Wasps. The University of Michigan Press, Ann Arbor, 265 p.Google Scholar
Evans, M. E. G. 1991. Ground beetles and the soil: their adaptations and environmental effects. In Meadows, P.S., and Meadows, A. (eds.), The Environmental Impact of Burrowing Animals and Animal burrows, Symposia of the Zoological Society of London, 63:119132.Google Scholar
Fastovsky, D. E., McSweeney, K., and Norton, L. D. 1989. Pedogenic development at the Cretaceous-Tertiary Boundary, Garfield County, Montana. Journal of Sedimentary Petrology, 59:758767.Google Scholar
Friis, E. M., Chaloner, W. G., and Crane, P. R. (eds.). 1987. The origin of angiosperms and their biological consequences. Cambridge University Press, New York, 358 p.Google Scholar
Genise, J. G. 1995. Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina. Ichnos, 3:287299.Google Scholar
Genise, J. G. and Hazeldine, P. L. 1995. A new insect trace fossil in Jurassic wood from Patagonia, Argentina. Ichnos, 4:15.Google Scholar
Genise, J. G., Mangano, M. G., Buatois, L. A., Laza, J. H., and Verde, M. 2000. Insect trace fossil associations in paleosols: The Coprinisphaera ichnofacies. PALAIOS, 15:4964.Google Scholar
Gierlowski-Kordesch, E. 1991. Ichnology of an ephemeral lacustrine/alluvial plain system: Jurassic East Berlin Formation, Hartford Basin, USA. Ichnos, 1:221232.CrossRefGoogle Scholar
Gillette, D. D., and Lockley, M. G. (eds.). 1989. Dinosaur tracks and traces. Cambridge University Press, New York, 454 p.Google Scholar
Glinski, J., and Lipiec, J. 1990. Soil Physical Conditions and Plant Roots. CRC Press, Boca Raton, 250 p.Google Scholar
Gosh, P. 1997. Geomorphology and palaeoclimatology of some Upper Cretaceous palaeosols in central India. Sedimentary Geology, 110:2549.CrossRefGoogle Scholar
Gray, J. 1988. Evolution of the freshwater ecosystem: the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:1214.Google Scholar
Gray, J., and Shear, W. 1992. Early life on land: minute fossils offer evidence that life invaded the land millions of years earlier than previously thought. American Scientist, 80:444456.Google Scholar
Grimaldi, D. A. (ed.). 1990. Insects from the Santana Formation, Lower Cretaceous, of Brazil. Bulletin of the American Museum of Natural History, 195, 191 p.Google Scholar
Gullan, P. J., and Cranston, P. S. 1994. The Insects: An Outline of Entomology. Chapman and Hall, London, 491 p.Google Scholar
Hadley, N. F. 1994. Water Relations of Terrestrial Arthropods. Academic Press, San Diego, 356 p.Google Scholar
Halffter, G., and Matthews, E. G. 1966. The natural history of dung beetles of the subfamily Scarabaeninae (Coleoptera, Scarabaeidae). Folia Entomologia Mex., 12/13:1312.Google Scholar
Hasiotis, S.T. 1997. Redefinition of Continental ichnology and the Scoyenia Ichnofacies. Unpublished Ph.D. dissertation. University of Colorado, Boulder, 182 p.Google Scholar
Hasiotis, S.T. 1998. In search of Jurassic continental trace fossils: Unlocking the mysteries of terrestrial and freshwater ecosystems. Modern Geology, 22:451459.Google Scholar
Hasiotis, S.T. 1999. The origin and evolution of freshwater and terrestrial crayfishes based on new body and trace fossil evidence. Freshwater Crayfish, 12:4970.Google Scholar
Hasiotis, S.T. In press . Reconnaissance study of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain region, USA: environmental, stratigraphic, and climatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 140 manuscript pages.Google Scholar
Hasiotis, S.T. In preparation . Analysis of Triassic ichnofossils, depositional systems, and ecosystems: Examples from the Upper Triassic Chinle Formation, Colorado Plateau, 151 manuscript pages.Google Scholar
Hasiotis, S.T., and Bown, T. M. 1992. Invertebrate trace fossils: The backbone of Continental Ichnology, p. 64104. In Maples, C. G., and West, R. R. (eds.), Trace Fossils: Their paleobiological aspects, Paleontological Society Short Course, Number 5, 238 p.CrossRefGoogle Scholar
Hasiotis, S.T., and Demko, T. M. 1996. Terrestrial and freshwater trace fossils, Upper Jurassic Morrison Formation, Colorado Plateau. Continental Jurassic Symposium, Museum of Northern Arizona Bulletin, 60:355370.Google Scholar
Hasiotis, S.T., and Demko, T. M. 1998. Continental trace fossils associated with the Felch Quarry Sandstone, Garden Park Paleontological Area, Canyon City, Colorado. Modern Geology, 22:461479.Google Scholar
Hasiotis, S. T., and Dubiel, R. F. 1994. Ichnofossil tiering in Triassic alluvial paleosols: Implications for Pangean continental rocks and paleoclimate, p. 311317. In Beauchamp, B., Embry, A. F., and Glass, D. (eds.), Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists Memoir 17.Google Scholar
Hasiotis, S. T., and Dubiel, R. F. 1995. Termite (Insecta: Isoptera) nest ichnofossils from the Triassic Chinle Formation, Petrified Forest National Park, Arizona. Ichnos, 4:119130.Google Scholar
Hasiotis, S. T., and Fiorillo, A. 1997. Dermestid beetle borings in sauropod and therapod dinosaur bones, Dinosaur National Monument, Utah: Keys to the taphonomy of a bone bed. Combined Rocky Mountain/South-central Geological Society of America meeting, El Paso, TX, p. 13.Google Scholar
Hasiotis, S. T., and Martin, A. 1999. Probable reptile nests from the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. In Santucci, V. and McClelland, L. (eds.), National Park Service Paleontological Research, 4:8590.Google Scholar
Hasiotis, S. T., and Mitchell, C. E. 1993. A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos, 2:291314.Google Scholar
Hasiotis, S. T., and Wellner, R. W. 1999. Complex large-diameter burrow systems, Upper Jurassic Morrison Formation, southeastern Utah: Are these evidence of fossorial mammals? Geological Society of America Annual Meeting, Denver, CO, 31:385.Google Scholar
Hasiotis, S. T., Aslan, A., and Bown, T. M. 1993b. Origin, architecture, and paleoecology of the Early Eocene continental ichnofossil Scaphichnium hamatum . Ichnos, 3:19.Google Scholar
Hasiotis, S. T., Bown, T. M., and Abston, C. 1994. Photoglossary of marine and continental ichnofossils, Volume 1. U. S. Geological Survey Digital Data Series (DDS) Publication, CD-ROM disc, DDS-23.Google Scholar
Hasiotis, S. T., Cressler, W., and Beerbower, J. R. 1999a. Terrestrial and freshwater ichnofossils as soil biota proxies in Devonian ecosystems: A major transformation in the organization of Lower Paleozoic continental ecosystems. Geological Society of America Northeast Section Meeting, Providence, Rhode Island, 31:22.Google Scholar
Hasiotis, S. T., Dubiel, R. F., and Demko, T. M. 1995. Triassic hymenopterous nests: Insect eusociality predates Angiosperm plants: Rocky Mountain Section, Geological Society of America Regional Meeting, 27:13.Google Scholar
Hasiotis, S. T., Fiorillo, A. R., and Hanna, R. 1999b. A Preliminary report on borings in Jurassic dinosaur bones: Trace fossil evidence of beetle interactions with vertebrates p. 193200. In Gillette, D. D. (ed.), Vertebrate Fossils of Utah, Miscellaneous Publication 99–1, Utah Geological Survey, Salt Lake City.Google Scholar
Hasiotis, S. T., Kirkland, J. I., and Callison, G. 1998a. Crayfish fossils and burrows, Upper Jurassic Morrison Formation, Western Colorado: Evolutionary and paleohydrologic implications. Modern Geology, 22:481491.Google Scholar
Hasiotis, S. T., Mitchell, C. E., and Dubiel, R. F. 1993a. Application of morphologic burrow interpretations to discern continental burrow architects: lungfish or crayfish. Ichnos, 2:315333.Google Scholar
Hasiotis, S. T., Bown, T. M., Kay, P. T., Dubiel, R. F., and Demko, T. M. 1996. The ichnofossil record of hymenopteran nesting behavior from Mesozoic and Cenozoic pedogenic and xylic substrates: Example of relative stasis. North American Paleontological Convention, NAPC-96, Washington, DC, p. 165.Google Scholar
Hasiotis, S. T., Kirkland, J. I., Windschessel, W., and Safris, C. 1998b. Fossil caddisfly cases (Trichoptera), Upper Jurassic Morrison Formation, Fruita Paleontological Area, Western Colorado. Modern Geology, 22:493502.Google Scholar
Hasiotis, S. T., Miller, M. F., Isbell, J. L., Babcock, L. E., and Collinson, J. W. 1999c. Is Triassic Crayfish Fossil Evidence from Antarctica Really Burrow Evidence of Mammal-like Reptiles? Resolving Vertebrate from Invertebrate Burrows. Freshwater Crayfish, 12:7181.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235:11561167.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change, p. 71108. In Wilgus, C. K., Hastings, B. S., Kendall, C. G., Posamentier, H. W., Ross, C. A., and Van Wagoner, J. C. (eds.), Sea-Level changes: An integrated approach. SEPM Special Publication 42. Society of Economic Paleontologists and Mineralogists, Oklahoma.CrossRefGoogle Scholar
Hinton, H. E. 1960. Cryptobiosis in the chironomid Polypedilum vanderplanki . Journal of Insect Physiology, 5:286300.Google Scholar
Hobbs, H. H. Jr. 1976. Adaptations and convergence in North American crayfishes. Freshwater Crayfish, 2:541551.Google Scholar
Hobbs, H. H. Jr. 1981. The crayfishes of Georgia. Smithsonian Contributions to Zoology No. 166, 166 p.Google Scholar
Hole, F. D. 1981. Effects of animals on soil. Geoderma, 25:75112.Google Scholar
Holldobler, B., and Wilson, E. O. 1990. The Ants. Belknap Press, Harvard University, Cambridge, Massachusetts, 732 p.Google Scholar
Holter, P. 1994. Tolerance of dung insects to low oxygen and high carbon dioxide concentrations. European Journal of Soil Biology, 30:187193.Google Scholar
Horner, J. R. 1982. Evidence of colonial nesting and “site fidelity” among ornithischian dinosaurs. Nature, 297:675676.Google Scholar
Horner, J. R. 1984. The nesting behavior of dinosaurs. Scientific American, 250:130137.Google Scholar
Jacot, A. P. 1940. The fauna of the soil. Quarterly Review of Biology, 14:2858.Google Scholar
Jarzembowski, E. A. 1981. An early Cretaceous termite from southern England (Isoptera: Hodotermitidae). Systematic Entomology, 6:9196.Google Scholar
Jarzembowski, E. A. 1990. A boring beetle from the Wealdon of the Weald, p. 373376. In Boucot, A. J. (ed.) Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam.Google Scholar
Jenny, H. 1941. Factors of soil formation. McGraw-Hill Publishers, New York, 281 p.Google Scholar
Jeram, A. J., Seldon, P. A., and Edwards, D. 1990. Land animals in the Silurian: arachnids and myriapods from Shropshire, England. Science, 250:658661.Google Scholar
Johnston, P. A., Eberth, D. A., and Anderson, P. K. 1996. Alleged vertebrate eggs from Upper Cretaceous red beds, Gobi Desert, are fossil insect (Coleoptera) pupal chambers: Fictovichnus new ichnogenus. Canadian Journal of Earth Sciences, 33:511522.Google Scholar
Kay, P. T., King, D., and Hasiotis, S. T. 1997. Petrified Forest National Park Upper Triassic trace fossils yield biochemical evidence of phylogenetic link to modern bees (Hymenoptera: Apoidea). Geological Society of America National Meeting, Salt Lake City, UT, 29:102.Google Scholar
Kevan, K. McE. 1962. Soil Animals. Philosophical Library, New York, 237 p.Google Scholar
Kraus, M. J. 1987. Integration of channel and floodplain suites, II. Vertical relations of alluvial paleosols. Journal of Sedimentary Petrology, 57:602612.Google Scholar
Krishna, K. 1990. Chapter 5. Isoptera, p. 7681. In Grimaldi, D. A. (ed.), Insects from the Santana Formation, Lower Cretaceous, of Brazil. Bulletin of the American Museum of Natural History, 195.Google Scholar
Krishna, K. and Weesner, F. M. (eds.). 1970. Biology of Termites, Vol. 2. Academic Press, New York, 643 p.Google Scholar
Kowalewski, M., Demko, T. M., Hasiotis, S. T., and Newell, D. 1998. Quantitative ichnology of Triassic crayfish burrows (Camborygma eumekenomos): Ichnofossils as linkages to population paleoecology. Ichnos, 6:521.Google Scholar
Kukalova-Peck, J. 1991. Fossil history and the evolution of hexapod structure, p. 141179. In Naumann, I. D., Corne, P. B., Lawrence, J. F., Nielsen, E. S., and Spradberry, S. P. (eds.), The Insects of Australia: A Textbook for Students and Research Workers. Melbourne University Press, CSIRO, Melbourne.Google Scholar
Labandeira, C. C. and Sepkoski, J. J. Jr. 1993. Insect diversity in the fossil record. Science, 261:310315.Google Scholar
Laws, G. R., Hasiotis, S. T., Fiorillo, A., Chure, D., Breithaupt, B. H., and Horner, J. 1996. The demise of a Jurassic dinosaur after death - three cheers for the dermestid beetle. Geological Society of America National Meeting, Denver, Colorado, 28:299.Google Scholar
Lee, K. E., and Wood, T. G. 1971. Termites and Soil. Academic Press, London, 251 p.Google Scholar
Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A. (eds.). 1979. Mesozoic mammals: The first two-thirds of mammalian history. University of California Press, Berkeley, 311 p.Google Scholar
Lidguard, S., and Crane, P. R. 1990. Angiosperm diversification and Cretaceous floristic trends: A comparison of palynofloras and leaf macrofloras. Paleobiology, 16:7793.Google Scholar
Little, C. 1990. The Terrestrial Invasion: An Echophysiological Approach to the Origin of Land Animals. Cambridge University Press, Cambridge, England, 304 p.Google Scholar
Lockley, M. G., and Hunt, A. P. 1995. Dinosaur Tracks and other fossil footprints of the western United States. Columbia University Press, New York, 338 p.Google Scholar
Lucas, S. G., and Morales, M. (eds.). 1993. The Nonmarine Triassic Symposium, New Mexico Museum of Natural History, Bulletin 3, 478 p.Google Scholar
Luscher, M. 1961. Air conditioned termite nests. Scientific American, 205:138145.Google Scholar
Marinissen, J. C. Y., and Bok, J. 1987. Earthworm amended soil structure: its influence on Collembola populations in grasslands. Pedobiologia, 32:243252.Google Scholar
MacDonald, D. (ed.). 1995. The Encyclopedia of Mammals. Facts on File, Inc., New York, 895 p.Google Scholar
MacNaughton, R. B., and Pickerill, R. K. 1995. Invertebrate ichnology of the nonmarine Lepreau Formation (Triassic), southern New Brunswick, eastern Canada. Journal of Paleontology, 69:160171.Google Scholar
McCarthy, P. J., Martini, I. P., and Leckie, D. 1997. Pedosedimentary history and floodplain dynamics of the Lower Cretaceous upper Blairmore Group, southwestern Alberta, Canada. Canadian Journal of Earth Science, 34:598617.Google Scholar
Messner, B., and Adis, J. 1988. The structure of the plastron in Gonographis adisi Hoffman 1985 (Pyrgodesmidae, Diplopoda), the hitherto unique species of Diplopoda living submersely. Zool. Jahrb. Anat., 117:277290.Google Scholar
Metz, L. J. 1971. Vertical movement of acarina under moisture radients. Pedobiologia, 11:262268.Google Scholar
Metz, R. 1992. Trace fossils from the Lower Jurassic nonmarine Towaco Formation, New Jersey. Northeastern Geology, 14:2934.Google Scholar
Metz, R. 1993. A new species of Spongeliomorpha from the Late Triassic of New Jersey. Ichnos, 2:259262.CrossRefGoogle Scholar
Metz, R. 1996. Newark Basin ichnology: The Late Triassic Perkasie Member of the Passaic Formation, Sanatoga, Pennsylvania. Northeastern Geology and Environmental Sciences, 18:118129.Google Scholar
Michener, C. D. 1974. The social behavior of the bees. Harvard University Press, Cambridge, 209 p.Google Scholar
Michener, C. D., and Grimaldi, D. A. 1988. A Trigona from late Cretaceous amber of New Jersey (Hymenoptera: Meloponinis). American Museum Novitates, 2917, 10 p.Google Scholar
Miller, M. F. 1984. Distribution of biogenic structures in Paleozoic nonmarine and marine-margin sequences: An actualistic model. Journal of Paleontology, 54:550570.Google Scholar
Niklas, K. J., Tiffney, B. J., and Knoll, A. H. 1980. Apparent changes in the diversity of plants. Evolutionary Biology, 12:189.Google Scholar
Paik, I.S., and Lee, Y.I. 1998. Desiccation cracks in vertic paleosols of the Cretaceous Hasandong Formation, Korea: genesis and palaeoenvironmental implications. Sedimentary Geology, 119:161179.Google Scholar
Padian, K., and Clemens, W. A. 1985. Terrestrial vertebrate diversity: episodes and insights, p. 4196. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton.Google Scholar
Parrish, J. T. 1993. Climate of the supercontinent Pangea. Journal of Geology, 101:215–33.Google Scholar
Parrish, J. T., Ziegler, A. M., and Scotese, C. R. 1982. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeography, Palaeoecology, Palaeoclimatology, 40:67101.Google Scholar
Payne, J A. 1965. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology, 4:592602.Google Scholar
Pemberton, S. G., MaCeachern, J. A., and Frey, R. W. 1992. Trace fossil facies models, p. 189207. In Walker, R. G. and James, N. P. (eds.), Facies Models, Geological Association of Canada, Geoscience Canada Reprint Series 1.Google Scholar
Ratcliffe, B. C., and Fagerstrom, J. A. 1980. Invertebrate lebensspuren of Holocene floodplain: Their morphology, origin, and paleoecological significance. Journal of Paleontology, 54:614630.Google Scholar
Raup, D. M. 1986. Biological extinction in earth history. Science, 231:15281533.Google Scholar
Reed, H. B. Jr. 1958. A study of dog carcass communities in Tennessee, with special reference to the insects. American Midland Naturalist, 59:213245.Google Scholar
Retallack, G.J. 1986. Reappraisal of a 220-Ma-old paleosol near Waterval Onder, South Africa. Precambrian Research, 32:195252.Google Scholar
Retallack, G.J. 1990. Soils of the Past: An introduction to paleopedology. Harper Collins Academic, London, 520 p.CrossRefGoogle Scholar
Retallack, G.J. 1997a. Dinosaurs and Dirt. Dinofest International Proceedings, p. 345359.Google Scholar
Retallack, G.J. 1997b. A colour guide to paleosols. John Wiley and Sons, Chichester, 175 p.Google Scholar
Retallack, G.J., and Alonso-Zarza, A. M. 1998. Middle Triassic paleosols and paleoclimate of Antarctica. Journal of Sedimentary Research, 68:169184.Google Scholar
Retallack, G.J., and Feakes, C. R. 1987. Trace fossil evidence for Late Ordovician animals on land. Science, 235:6163.Google Scholar
Retallack, G.J., and Krull, E. S. 1999. Landscape ecological shift at the Permian-Triassic boundary in Antarctica. Australian Journal of Earth Sciences, 46:785812.Google Scholar
Richards, B. N. 1974. Introduction to the Soil Ecosystem. Longman Group Limited, Essex, 266 p.Google Scholar
Rogers, R. R. 1992. Non-marine borings in dinosaur bones from the Upper Cretaceous Two Medicine Formation, northwestern Montana. Journal of Vertebrate Paleontology, 12:528531.Google Scholar
Rolfe, W. D. I. 1985. Early terrestrial arthropods: A fragmentary record. Philosophical Transactions of the Royal Society, B309:207218.Google Scholar
Rovner, J. S. 1987. Nests of terrestrial spiders maintain a physical gill: flooding and the evolution of nest construction. Journal of Arachnology, 14:327337.Google Scholar
Rozenfelds, A. C., and Sorbe, I. 1987. Problematic insect leaf mines from Upper Triassic Ipswich Coal Measures of southeastern Queensland, Australia: Alcheringa, 11:5157.Google Scholar
Sarkar, S., and Chaudhuri, A. K. 1992. Trace fossils in Middle Triassic fluvial redbeds, Pranhita-Godavari Valley, south India. Ichnos, 2:719.Google Scholar
Schaller, F. 1968. Soil Animals. University Michigan Press, Ann Arbor, 144 p.Google Scholar
Scotese, C. R., and Glonka, J. 1992. Paleogeographic atlas: PALEOMAP Project. Department of Geology, University of Texas at Arlington.Google Scholar
Scott, A. C. 1991. Evidence for plant-arthropod interactions in the fossil record. Geology Today, 7:5861.Google Scholar
Scott, A. C. 1992. Trace fossils of plant-arthropod interactions, p. 197223. In Maples, C. G., and West, R. R. (eds.), Trace Fossils: Their paleobiological aspects, Paleontological Society Short Course, Number 5.Google Scholar
Scott, A. C., Stephenson, J., and Chaloner, W. G. 1992. Interactions and coevolution of plants and arthropods during the Palaeozoic and Mesozoic. Philosophical Transactions of the Royal Society of London, B355:129165.Google Scholar
Seldon, P. A. 1993. Fossil arachnids—recent advances and future prospects. Memoirs of the Queensland Museum, 32:389400.Google Scholar
Shear, W. A., Gensel, P. G., and Jeram, A. J. 1996. Fossils of large terrestrial arthropods from the lower Devonian of Canada. Nature, 384:555557.Google Scholar
Smith, K. G. V. 1986. A manual of forensic entomology. Cornell University Press, Ithaca, 205 p.Google Scholar
Thorpe, J. 1949. Effects of certain animals that live in soils. Scientific Monthly, 68:180191.Google Scholar
Valentine, J. W. (ed.). 1985. Phanerozoic Diversity Patterns—profiles in macroevolution. Princeton University Press, Princeton, 441 p.Google Scholar
Vander Wall, S. B. 1990. Food hoarding in animals. The University of Chicago Press, Chicago, 445 p.Google Scholar
Villani, M. G., Allee, L. L., Diaz, A., and Robbins, P. S. 1999. Adaptive strategies of edaphic arthropods. Annual Review in Entomology, 44:233–56.Google Scholar
Vittum, P. J., Villani, M. G., and Tahiro, H. 1999. Turfgrass Insects of the United States and Canada, 2nd edition. Cornell University Press, Ithaca, 422 p.Google Scholar
Wahl, A., Martin, A., and Hasiotis, S. T. 1998. Vertebrate coprolites and coprophagy traces, Chinle Formation (Upper Triassic), Petrified Forest National Park, Arizona, p. 144148. In Santucci, V. L., and McClelland, L. (eds.), National Park Service Paleontological Research, Technical Report NPS/NRGRD/GRDTR-98/01.Google Scholar
Wallwork, J. A. 1970. Ecology of soil animals. McGraw-Hill, London, 283 p.Google Scholar
Wallwork, J. A. 1976. The distribution and diversity of soil fauna. Academic Press, London, 355 p.Google Scholar
Waterhouse, D. F. 1974. The biological control of dung. Scientific American, 230:100109.Google Scholar
Willis, E. R., and Roth, L. M. 1962. Soil and moisture relations of Scaptocoris divergins Troeschner (Hemiptera: Cynidae). Annals of the Entomological Society of America, 55:2132.Google Scholar
Wilson, E. O. 1971. The Insect Societies. Belknap Press, Harvard University, Cambridge, 548 p.Google Scholar
Wilson, E. O. 1992. The Biodiversity of Life. W. W. Norton and Company, New York, 521 p.Google Scholar
Wilson, E. O., Carpenter, F. M., and Brown, W. L. 1967. The first Mesozoic ants. Science, 157:10381040.Google Scholar
Wing, S. L., and Sues, H.-D. 1992. Mesozoic and Early Cenozoic terrestrial ecosystems, p. 327416. In Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L. (eds.), Terrestrial ecosystems through Time—evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago.Google Scholar
Wood, M. 1995. Environmental soil biology, 2nd edition. Blackie Academic and Professional, London, 150 p.Google Scholar
Zhou, Z. and Zhang, B. 1989. A sideritic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Palaeobotany and Palynology, 59:133143.Google Scholar
Zonneveld, I. S. 1995. Land Ecology—An introduction to Landscape Ecology as a base for Land Evaluation, Land Management, and Conservation. SPB Academic Publishing, Amsterdam, 199 p.Google Scholar