Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T17:57:34.697Z Has data issue: false hasContentIssue false

Cretaceous Records of Diatom Evolution, Radiation, and Expansion

Published online by Cambridge University Press:  21 July 2017

David M. Harwood
Affiliation:
Department of Geosciences, 214 Bessey Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0340
Vladimir A. Nikolaev
Affiliation:
Botanical Institute, The Academy of Sciences of Russia, Popova St. 2, St. Petersburg 197376 Russia
Diane M. Winter
Affiliation:
Department of Geosciences, 214 Bessey Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0340
Get access

Abstract

New information and discussions regarding Mesozoic diatoms presented over the last decade advanced our knowledge of their origin and early history. The oldest confirmed centric diatom fossils are presented here from the earliest Cretaceous, and araphid and raphid pennate diatoms now date from the Late Cretaceous; all from terrestrial sediments. Molecular sequencing helped clarify relationships between diatom lineages, and verify the position of diatoms within the heterokontophytes. Molecular clock approaches estimate a diatom origin near ~135 Ma, but not before 240 Ma. Biomarkers in marine sediments are able to trace a diatom presence back to the mid-Cretaceous, even when siliceous fossils are absent. Seasonal growth and encystment cycles in Late Cretaceous planktonic marine diatoms are now well documented. A biostratigraphic framework for the Late Cretaceous Arctic will aid regional and global biostratigraphic correlations. The systematic position of many new taxonomic groups is now included within a more natural classification scheme that better reflects phylogenetic relationships evident in molecular data and affirmed by biostratigraphic micropaleontology. Discussions regarding the impact of diatoms on several global systems are maturing, as more information becomes available. Four stages in diatom evolution are proposed to explain the history of radiation, extinction, and expansion into new environments and habitats during the Mesozoic.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, C. W., and Hilgert, J. W. 1986. Scale microfossils from the Early Cambrian of northwest Canada. Journal of Paleontology, 60:9731015.CrossRefGoogle Scholar
Alverson, A. J., Jansen, R. K., and Theriot, E. C. 2007. Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of fresh waters by Thalassiosiroid diatoms. Molecular Phylogenetics and Evolution, doi:10.1016/j.ympev.2007.03.024.CrossRefGoogle Scholar
Ambwani, K., Sahni, A., Kar, R. K., and Dutta, D. 2003. Oldest known non-marine diatoms (Aulacoseira) from the uppermost Cretaceous Deccan Intertrappen beds and Lameta Formation of India. Revue de Micropaleontology, 46:6771.CrossRefGoogle Scholar
Arthur, M., and Sageman, B., 1994. Marine black shaled: depositional mechanisms and environments of ancient deposits. Annual Reviews of Earth and Planetary Science, 22:499551.CrossRefGoogle Scholar
Barker, I. W., and Meakin, S. H. 1947. New diatoms from the Moreno Shale. Journal of the Quekett Microscopical Club, series 4, 2:143144.Google Scholar
Barker, I. W., and Meakin, S. H. 1949. New and rare diatoms. Journal of the Quekett Microscopical Club, series 4, 3:301303.Google Scholar
Barron, J. A. 1985. Diatom biostratigraphy of the CESAR 6 core, Alpha Ridge, p. 137148. In Jackson, H. R. et al. (eds.), Initial Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geological Survey of Canada Paper 84–22.Google Scholar
Barron, J. A., and Baldauf, J. G., 1995. Cenozoic marine diatom biostratigraphy and application to paleoclimatology and paleoceanography, 107118. In Blome, C. D. et al., (convenors), Siliceous Microfossils. Paleontological Society Short Courses in Paleontology, 8.Google Scholar
Benda, L. 1982. Die Diatomeen des späten Apt in Nordwestdeutschland. Geologisches Jarbuch A 65:4-5-411.Google Scholar
Beraldi-Campesi, H., Cevallos-Ferriz, S. R. S., and Chacón-Baca, E. 2004. Microfossil algae associated with Cretaceous stromatolites in the Tarahumara Formation, Sonora Mexico. Cretaceous Research, 25(2):249265.CrossRefGoogle Scholar
Beraldi-Campesi, H., and Cevallos-Ferriz, S. R. S. 2005. Microfossil diversity in the Tarahumara Formation, Sonora. Revista Mexicana de Ciencias Geologicas, 22(2):261271.Google Scholar
Bhattacharya, D., Medlin, L. K., Wainwright, P. O., Ariztia, E. V., Bibeau, C., Stickel, S. K., and Sogin, M. L. 1992. Algae containing chlorophylls a + c are paraphyletic: molecular evolutionary analysis of the Chromophyta. Evolution, 46:18011817.CrossRefGoogle Scholar
Bhattacharya, D., and Medlin, L. K. 2004. Dating and algal origin using molecular clock methods. Protist, 155:910.CrossRefGoogle ScholarPubMed
Chacón-Baca, E., Beraldi-Campesi, H., Cevallos-Ferriz, S., Knoll, A., and Golubic, S. 2002. 70 Ma nonmarine diatoms from northern Mexico. Geology, 30:279281.2.0.CO;2>CrossRefGoogle Scholar
Chambers, P. 1996. Late Cretaceous and Palaeocene marine diatom floras. , University College London, 498 pp.Google Scholar
Chang, K.-H., Filatova, N. I., AND, Park, S.-O. 1999. Upper Mesozoic stratigraphic synthesis of Korean Peninsula. Econ. Environ. Geol., 32(4):353363.Google Scholar
Chang, K.-H, Suzuki, K., Park, S.-O., Ishida, K., and Uno, K. 2003. Recent advances in the Cretaceous stratigraphy of Korea. Journal of Asian Earth Sciences, 21:937948.CrossRefGoogle Scholar
Crawford, R. M. 2004. The diatom genera Ellerbeckia and Actinocyclus: an appraisal of Kociolek and Spaulding. Journal of Phycology, 40:432434.CrossRefGoogle Scholar
Crawford, R. M., and Sims, P. A. 2006. The diatoms Radialiplicata sol (Ehrenb.) Gleser and R. clavigera (Grun.) Gleser and their transfer to Ellerbeckia, thus a genus with freshwater and marine representatives. Nova Hedwigia, Suppl. 130: 137162.Google Scholar
Davies, A. 2006. High resolution palaeoceanography and palaeoclimatology from mid and high latitude Late Cretaceous laminated sediments. University of Southampton, Faculty of Engineering Science and Mathematics, School of Ocean and Earth Science, , 274pp. http://eprints.soton.ac.uk/41359/.Google Scholar
Dell'Agnese, D. J., and Clark, D. L. 1994. Siliceous microfossils from the warm Late Cretaceous and Early Cenozoic Arctic Ocean. Journal of Paleontology, 68:3147.CrossRefGoogle Scholar
Dun, W. S., Rands, W. H., and David, T. W. E. 1901. Note on the occurrence of diatoms, radiolaria and infusoria in the Rolling Downs Formation (Lower Cretaceous). Queensland. Proceedings of the Society of New South Wales, 26:299309.Google Scholar
Erba, E. 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52:85106.CrossRefGoogle Scholar
Falkowski, P. G., Barber, R. T., and Smetacek, V. 1998. Biogeochemical controls and feedbacks on oceanic primary production. Science, 281:200206.CrossRefGoogle Scholar
Falkowski, P. G., Schofield, O., Katz, M. E., Van Schotteberge, B., Knoll, A. H. 2004a. Why is the land green and the ocean red?, p. 49454. In Thierstein, H. and Young, J. R. (eds.), Coccolithophores: from molecular processes to global impact.CrossRefGoogle Scholar
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. J. R. 2004b. The evolution of modern eukaryotic phytoplankton. Science, 305(5682):345360.CrossRefGoogle ScholarPubMed
Fenner, J. 1985. Late Cretaceous and Paleogene planktic diatom stratigraphy, p. 713762. In Saunders, J. et al. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281:237240.CrossRefGoogle ScholarPubMed
Fonseca, C. 1997. Late Cretaceous-Early Tertiary paleoceanography and cyclic sedimentation along the Californian Margin: Evidence from the Moreno Formation, , Stanford University, 449 pp.Google Scholar
Forti, A., and Schulz, P. 1932. Erste Mitteilung über Diatomeen aus dem Hannoverschen Gault. Beihefte, Botanischen Zentralblatt, Bd. 50, Abt. II, Heft. 1:241246.Google Scholar
Fourtanier, E. 1991. Diatom biostratigraphy of Equatorial Indian Ocean Site 758, p. 189208. In Weissel, J. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 121. Ocean Drilling Program, College Station, TX.Google Scholar
Foucault, A., Servant-Vildary, S., Fang, N., and Powichrowski, L. 1986. Un des plus anciens gisements de diatomées découvert dans l'Albien-Cénomanien inférieur des Alpes figures (Italie): remarque sur l'appariation de ces algues. Comptes Rendu, Académie Sciences, Paris, t. 303. Serie II, 5:397402.Google Scholar
Fryxell, G. A. 1994. Planktonic marine diatom winter stages: Antarctic alternatives to resting spores. Proceedings of the 11th International Diatom Symposium 1990, Memoirs of the California Academy of Sciences, No. 17:437448.Google Scholar
Gapeev, A. P. 1995. Cambrian forms of diatoms in deposit of Malogo Karatau? Lithology and useful fossils, N. 3:236251 (In Russian).Google Scholar
Georgi, K. H. 1976. Mikrofaunistich-lithologische Unter such ungen der Hills-sandstein-Region Apt/ Alb im Raum Salzgitter-Goslar. Mitteilungen aus dem Geol. Inst. d. Technischen. Univ. Hannover, H. 13 (Unterkreide-Heft):5112.Google Scholar
Geroch, S. 1978. Lower Cretaceous diatoms in the Polish Carpathians. Rocznik Polskiego Towarzystwa Geologicznego, 48:283295.Google Scholar
Gersonde, R., and Harwood, D. M. 1990. Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1: vegetative cells, p. 365402. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Gleser, Z. I. 1966. Silicoflagellatophyceae. In Gollerbakh, M. M. (ed.), Cryptogamic Plants of the U.S.S.R. (Volume 7). Komarova Botanical Institute, Acad. Sci. USSR, 363 p. (Translated from Russian by Israel Program for Scientific Translations Ltd., Jerusalem, 1970).Google Scholar
Goertzen, L. R. and Theriot, E. C. 2003. Effect of taxon sampling, character weighting, and combined data on the interpretation of relationships among the Heterokont algae. Journal of Phycology, 39:423439.CrossRefGoogle Scholar
Guillou, L., Chrétiennot-Dinet, M. J., Medlin, L. K., Claustre, J., Loiseaux-De Goéur, S., and Vaulot, D. 1999. Bolidomonas: a new genus with two species belonging to a new algal class, Bolidophyceae (Heterokonta). Journal of Phycology, 35:368381.CrossRefGoogle Scholar
Haig, D. W., and Barnbaum, D. 1978. Early Cretaceous microfossils from the type Wallumbilla Formation, Surat Basin, Queensland. Alcheringa, 2:159178.CrossRefGoogle Scholar
Hajós, M., and Stradner, H. 1975. Late Cretaceous Archaeomonadaceae, Diatomaceae, and Silicoflagellatae from the South Pacific Ocean, Deep Sea Drilling Project, Leg 29, Site 275, p. 9131009. In Kennett, J. P. et al. (eds.). Initial Reports of the Deep Sea Drilling Project, Volume 29. U.S. Government Printing Office, Washington, DC.Google Scholar
Handoh, I. C., and Lenton, T. M. 2003. Periodic mid-Cretaceous oceanic anoxic events linked by oscillations of the phosphorous and oxygen biogeochemical cycles. Global Biogeochemical Cycles, 17(4):1092, doi:10.1029/2003GB002039,CrossRefGoogle Scholar
Hanna, G. D. 1927. Cretaceous diatoms from California. Occasional Paper of the California Academy of Sciences, 13:549.Google Scholar
Hanna, G. D. 1934. Additional notes on diatoms from the Cretaceous of California: Journal of Paleontology, 8:352355.Google Scholar
Harper, H. E. 1977. A Lower Cretaceous (Aptian) diatom flora from Queensland, Australia. Proceedings of the Fourth Symposium on Recent and Fossil Diatoms. Beihefte, Nova Hedwigia, 54:411412.Google Scholar
Harwood, D. M. 1988. Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy from Seymour Island, eastern Antarctic Peninsula, p. 55129. In Feldmann, R. M. and Woodburne, M. O. (eds.), Seymour Island Geology and Paleontology. Geological Society of America, Memoir 169.CrossRefGoogle Scholar
Harwood, D. M. 1999. Diatomites, p. 436443. In Stoermer, E. F. and Smol, J. P. (eds.), The diatoms: applications in the Earth and environmental sciences. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Harwood, D. M., and Gersonde, R. 1990. Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 2: Resting spores, Chrysophycean cysts, and endoskeletal dinoflagellate, and notes on the origin of diatoms, p. 403426. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, Science Results, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Harwood, D. M., and Nikolaev, V. A. 1995. Cretaceous Diatoms: morphology, taxonomy, biostratigraphy, p. 81106. In Blome, C. D. et al., (convenors), Siliceous Microfossils. Paleontological Society Short Courses in Paleontology, 8.Google Scholar
Harwood, D. M., Chang, K.-H., and Nikolaev, V. A. 2004. Late Jurassic to earliest Cretaceous diatoms from Jasong Synthem, Southern Korea: Evidence for a terrestrial origin. p. 81. In Witkowski, A., Radziejewska, T., Wawrzyniak-Wydrowska, B., Daniszewska-Kowalczyk, G., and Bak, M. (eds.), Abstracts, 18th International Diatom Symposium, Miedzyzdroje, Poland.Google Scholar
Hasle, G. R., and Syvertsen, E. E. 1985. Thalassiosiropsis, a new diatom genus from the fossil records. Micropaleontology, 31:8291.CrossRefGoogle Scholar
Hollis, C. J., Rodgers, K. A., and Parker, R. J. 1995. Siliceous plankton bloom in the earliest Tertiary of Marlborough, New Zealand. Geology, 23:835838.2.3.CO;2>CrossRefGoogle Scholar
Jordan, R. W., and Ito, R. 2002. Observations on Proboscia species from Late Cretaceous sediments, and their possible evolution from Kreagra, p. 313329. In John, J. (ed.), 15th International Diatom Symposium. Koeltz Scientific Publishers, Koenigstein, Germany.Google Scholar
Jousé, A. P. 1948. Dotretichnye diatomovye Vodorosli [Pre-Tertiary diatom algae]. Botanicheskii Zhurnal, 33:345356. (In Russian).Google Scholar
Jousé, A. P. 1949. Diatoms from Mesozoic deposits. p. 109114. In Diatom Analysis, Vol. 1, Gosgeolizdat, Leningrad.Google Scholar
Jousé, A. P. 1978. Diatom biostratigraphy on the generic level. Micropaleontology, 24:316326.CrossRefGoogle Scholar
Julius, M. L. 2007. Perspectives on the evolution and diversification of the diatoms. In Starratt, S. (ed.), From Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms. Paleontological Society Short Course, Paleontological Society Papers, 13: (this volume).Google Scholar
Katsumata, H. and Shimoyama, A. 2001. Thiophenes in the Cretaceous/Tertiary boundary sediments at Kawaruppu, Hokkaido, Japan. Geochemical Journal, 35:6776.CrossRefGoogle Scholar
Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H., and Falkowski, P. G. 2004. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual Review of Ecology, Evolution and Systematics, 35:523556.CrossRefGoogle Scholar
Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., Fennel, K., and Falkowski, P. G. 2005. Biological overprint of the geological carbon cycle. Marine Geology, 217: 323338.CrossRefGoogle Scholar
Kemp, A. E. S., Pearce, R. B., Koizumi, I., Pike, J., and Rance, S. J. 1999. The role of matforming diatoms in formation of Mediterranean sapropels. Nature, 398 (6722):5761.CrossRefGoogle Scholar
Kemper, E., Bertran, H., and Deiters, H. 1975. Zur Biostratigrafie und Paleokölogie der Schichtenfolge Ober Apt/Unter im Beckenzeirum nördlich und östlich von Hannover. Ber. Naturhist. Ges., Hannover, 1975, Bd 119, S. 4985.Google Scholar
Kerr, A. C. 1998. Ocean plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Journal of the Geological Society, London, 155:619626.CrossRefGoogle Scholar
Kidder, D. L. and Erwin, D. H. 2001. Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. Journal of Geology, 109:509522.CrossRefGoogle Scholar
Kitchell, J. A., Clark, D. L., and Gombos, A. M. Jr. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios, 1:504511.CrossRefGoogle Scholar
Knoll, A.H. 2003. Biomineralization and Evolutionary History. Reviews in Mineralogy and Geochemistry, 54(1):329356.CrossRefGoogle Scholar
Kociolek, J. P., and Spaulding, S. A. 2002. Morphological variation, species concepts, and classification of an unusual fossil, centric diatom (Bacillariophyta) from Western North America. Journal of Phycology, 39:821833.CrossRefGoogle Scholar
Koizumi, I. 1979. Siliceous microfossils, diatoms and silicoflagellates, of the Cretaceous Period. Fossils, 29:3141.Google Scholar
Kooistra, W. H. C. F., and Medlin, L. M. 1996. Evolution of the diatoms (Bacillariophyta). IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Mol. Phylogenet. Evol., 6:391407.CrossRefGoogle Scholar
Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K., and Mann, D. G. 2007. The origin and evolution of the diatoms: their adaptation to a planktonic existence. In Falkowski, P. and Knoll, A. (eds.), Evolution of primary producers in the sea, Elsevier.Google Scholar
Koutsoukos, E. A. M., and Hart, M. B. 1990. Radiolarians and diatoms from the Mid-Cretaceous succession of the Sergipe Basin, northeastern Brazil: paleoceanographic assessment. Journal of Micropaleontology, 9(1):4564.CrossRefGoogle Scholar
Krebs, W. N. 1999. Diatoms in oil and gas exploration. pp. 402412. In Stoermer, E. F. and Smol, J. P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences.CrossRefGoogle Scholar
Leckie, R. M., Bralower, T. J., and Cashman, R., 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17:129.CrossRefGoogle Scholar
Lewis, J., Harris, A. S. D., Jones, K. J., and Edmonds, R. L. 1999. Long-term survival of marine planktonic diatoms and dinoflagellates in stored sediment samples. Journal of Plankton Research, 21(2):343354.CrossRefGoogle Scholar
Long, J. A., Fuge, D. P., and Smith, J. 1946. Diatoms of the Moreno Shale. Journal of Paleontology, 20:89118.Google Scholar
Mann, D. G. 1999a. The species concept in diatoms. Phycologia, 38:437495.CrossRefGoogle Scholar
Mann, D. G. 1999b. Crossing the Rubicon: the effectiveness of the marine/freshwater interface as a barrier to migrations of diatom germplasm, p. 121. In Mayama, S., Idei, M., and Koizumi, I. (eds.), Proceedings of 14th International Diatom Symposium, Koeltz Scientific Books, Koenigstein.Google Scholar
Mann, D. G., and Marchant, H. J. 1989. The origin of the diatom and its life cycle, p. 307323. In Green, J. C. et al. (eds.), The Chromophyte Algae: Problems and Perspectives. Oxford University Press, New York.Google Scholar
Martinez Macchiavello, J. C. 1987. Bioestratigrafia diatomica de un perfil del Cretacico Superior de la Isla Vicecomodoro Marambio, Antartida. Ameghiniana, 24:277288.Google Scholar
Medlin, L. 2002. Why silica or better yet why not silica? Speculations as to why the diatoms utilize silica. Diatom Research, 17:453459.CrossRefGoogle Scholar
Medlin, L. 2007. Continued ideas on the evolution of silica metabolism. Diatom Research, 22(1):217226.CrossRefGoogle Scholar
Medlin, L. K., Williams, D. M., and Sims, P. A. 1993. The evolution of the diatoms (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. European Journal of Phycology, 28:261275.CrossRefGoogle Scholar
Medlin, L. K., Kooistra, W. H. C. F., Gersonde, R., Sims, P. A., and Wellbrock, U. 1997a. Is the origin of the diatoms related to the end-Permian mass extinction? Nova Hedwigia, 65:111.CrossRefGoogle Scholar
Medlin, L. K., Kooistra, W. H. C. F., Potter, D., Saunders, G. W., and Anderson, R. A. 1997b. Phylogenetic relationships of the “golden algae” (hepatophytes, heterokont chrysophytes) and their plastids. Plant Systematics and Evolution, Supplement 11:187210.CrossRefGoogle Scholar
Medlin, L. K. and Kaczmarska, I. 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 43:245270.CrossRefGoogle Scholar
Moshkovitz, S., Erlich, A., and Soudry, D. 1983. Siliceous Microfossils of the Upper Cretaceous Mishash Formation, Central Negev, Israel. Cretaceous Research, 4:73194.CrossRefGoogle Scholar
Nelson, D. M., Treguer, P., Brzezinski, M. A., Leynaert, A., and Queguiner, B. 1995. Production and dissolution of biogenic silica in the ocean – revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9:359372.CrossRefGoogle Scholar
Nikolaev, V. A. 1988. A system of the class Centrophyceae (Bacillariophyta). Botanicheskii Zhurnal, 73:486496. (In Russian).Google Scholar
Nikolaev, V. A., and Harwood, D. M. 1997. New process, genus and family of Lower Cretaceous diatoms from Australia. Diatom Research, 12: 2433.CrossRefGoogle Scholar
Nikolaev, V.A., and Harwood, D. M. 1999. Taxonomy of Lower Cretaceous Diatoms. Proceedings of the 14th International Diatom Symposium, Tokyo, Japan, Koetlitz Publishers, 101112.Google Scholar
Nikolaev, V. A., and Harwood, D. M. 2000a. Morphology and taxonomic position of the Cretaceous diatom genus Pomphodiscus Barker et Meakin. Micropaleontology, 46(2): 167177.CrossRefGoogle Scholar
Nikolaev, V. A., and Harwood, D. M. 2000b. Diversity and system of classification in centric diatoms, p. 3753. In Witkowski, A. and Siemimska, J. (eds.), The origin and early evolution of the diatoms: fossil, molecular and biogeographical approaches. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow.Google Scholar
Nikolaev, V. A., Harwood, D. M., and Samsonov, N. I. 2001a. Lower Cretaceous Diatoms, Komarov Botanical Institute, Saint Petersburg, NAUKA, 75 pp.Google Scholar
Nikolaev, V. A., Kociolek, J. P., Barron, J. A., Fourtanier, E. M., Harwood, D. M. 2001b. Upper Cretaceous diatoms (Bacillariophyceae) from the Marca Shale, Moreno Gulch, California. Occasional Papers of the California Academy of Sciences, No. 152, 89 pages.Google Scholar
Nikolaev, V. A. and Harwood, D. M. 2002a. Diverstiy and classification of centric diatoms. In Economou-Amilli, A. (ed.), Proceedings of the 16th International Diatom Symposium, p. 127152, University of Athens.Google Scholar
Nikolaev, V. A., and Harwood, D. M. 2002b. Morphology, Taxonomy and System of Classification of Centric Diatoms, Saint Petersburg, NAUKA, 117 pp.Google Scholar
Olshtynskaja, A. 1990. Morphology of the diatom genus Pseudopodosira , p. 93100. In Simola, H. (ed.), Proceedings of the 10th International Diatom Symposium, Joensu, Finland 1988. O. Koeltz Scientific Books, Koenigstein.Google Scholar
Raven, J. A., and Waite, A. M. 2004. The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytologist, 162:4561.CrossRefGoogle Scholar
Rospondek, M. J., Köster, J. and Sinninghe-Damsté, J. S. 2000. Organic molecular fossils of diatoms, p. 123135. In Witkowski, A. and Siemimska, J. (eds.), The origin and early evolution of the diatoms: fossil, molecular and biogeographical approaches. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow.Google Scholar
Ross, R. and Sims, P. A. 1997. A revision of Actinodictyon Pantocsek. Diatom Research, 12(2): 321340.CrossRefGoogle Scholar
Rothpletz, A. 1896. Über die Flysch-Fucoiden und einige andere fossile Algen, sowie über liasische, Diatomeen führende Hornschwämme. Zeitschrift Deutsch Geolog. Gesellschaft, 48:854914.Google Scholar
Rothpletz, A. 1900. Über einen neuen jurassichen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift Deutsch Geolog. Gesellschaft, 52:154160.Google Scholar
Round, F. E. 1981a. Some aspects of the origin of diatoms and their subsequent evolution. Biosystems, 14:483486.CrossRefGoogle ScholarPubMed
Round, F. E. 1981b. Morphology and phyletic relationships of the silicified algae and the archetypal diatom - monophyly or polyphyly, p. 97128. In Simpson, T. L. and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Round, F. E., and Sims, P. A. 1981. The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations, p. 301320. In Ross, R. (ed.) Proceedings of the Sixth Symposium on Recent and Fossil Diatoms. O. Koeltz Scientific Books, Koenigstein.Google Scholar
Round, F. E., and Crawford, R. M. 1981. The lines of evolution of the Bacillariophyta. I. Origin. Proceedings of the Royal Society of London, Series B., 211:237260.Google Scholar
Round, F. E., and Crawford, R. M. 1984. The lines of evolution of the Bacillariophyta, II. The centric series. Proceedings of the Royal Society of London, Series B., 221:169188.Google Scholar
Round, F. E., Crawford, R. M., and Mann, D. G. 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge, 747 pp.Google Scholar
Rust, D. Beitrage zur Kenntris der fossilen Radiolarien aus Gesteinen der Jura. Palaeontographica, 31(5/6):273321.Google Scholar
Sageman, B. B., Meyers, S. R., and Arthur, M. A. 2006. Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology, 34(2): 125128.CrossRefGoogle Scholar
Schulzd, P. 1935. Diatomeen aus senonen Schwammgesteinen der Danziger Bucht. Zugleich ein Betrag zur Entwicklungsgeschichte der Diatomeem. Botanisches Archives, 37:383423.Google Scholar
Siemenska, J., and Kwiecinska, B. 1978. Discovery of diatom remnants and other nannofossila in the Preworno marbles using electron microscopy. Pol. Arch. Hydrobiol. T. 1, N 1/2, S. 391392.Google Scholar
Siemenska, J., Kwiecinska, B. and Kaczmarski, F. 1980. Further remnants of diatoms and other organisms found in Preworno marbles. Bull. Acad. Pol. Sci. terre. T. 1, S. 1921.Google Scholar
Sieminska, J. 2000. The discoveries of diatoms older than the Cretaceous, p. 5574. In Witkowski, A. and Sieminska, J., (ed.) The origin and early evolution of diatoms: fossil, molecular and biogeographical approaches. Szafer Institute of Botany, Polish Academy of sciences, Cracow, Poland.Google Scholar
Sieminska, J. 2003. Are all reports on diatoms older than Cretaceous not credible? Institute of Oceanography, University of Gdansk. Oceanological and Hydrobiological Studies 32(3): 1927.Google Scholar
Sicko-Goad, L., Stoermer, E. F., and Fahnenstiel, G. 1986. Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from anoxic sediments of Douglas Lake, Michigan. I. light and 14C uptake. Journal of Phycology, 22:2228.CrossRefGoogle Scholar
Sims, P. A. 1986. Sphynctolethus Hanna, Ailuretta, gen. nov. and evolutionary trends within the Hemiauloideae. Diatom Research, 1:241269.CrossRefGoogle Scholar
Sims, P. A. 1988. The fossil genus Trochosira, its morphology, taxonomy and systematics. Diatom Research, 3:245257.CrossRefGoogle Scholar
Sims, P. A. 1989. Some Cretaceous and Paleogene species of Coscinodiscus: a micromorphological and systematic study. Diatom Research, 4:351371.CrossRefGoogle Scholar
Sims, P. A. 1994a. Benetorus, Gladiopsis and related genera from the Cretaceous. Diatom Research, 9:165187.CrossRefGoogle Scholar
Sims, P. A. 1994b. Skeletonemopsis, a new genus based on the fossil species of the genus Skeletonema Grev. Diatom Research, 9:387410.CrossRefGoogle Scholar
Sims, P.A. 1998. The early history of the Biddulphiales. I. The genus Medlinia gen. nov. Diatom Research, 13(2):337374.CrossRefGoogle Scholar
Sims, P. A. 2001. The genus Praetriceratium gen. nov.: a survey of eupodiscoid genera with a sipho marginalis. Diatom Research, 16(2):399416.CrossRefGoogle Scholar
Sims, P.A. 2006. A revision of the genus Rattrayella De-Toni including a discussion on related genera. Diatom Research, 21(1): 125158.CrossRefGoogle Scholar
Sims, P. A., and Hasle, G. R. 1987. Two Cretaceous Stellarima species: S. steinyi and S. distincta; their morphology, paleogeography and phylogeny. Diatom Research, 2:229240.CrossRefGoogle Scholar
Sims, P. A., and Ross, R. 1988. Some Cretaceous and Paleocene Trinacria (diatom) species. Bulletin of the British Museum (Natural History), Botany series, 18:275322.Google Scholar
Sims, P.A. and Chambers, P.M. 2002. The fossil marine genus Rhaphidophora Long, Fuge & Smith. Diatom Research, 17(1):205217.CrossRefGoogle Scholar
Sims, P.A. and Crawford, R.M. 2002. The morphology and taxonomy of the marine centric diatom genus Paralia. II. Paralia crenulata, P. fausta and the new species, P. hendeyi . Diatom Research, 17(2):363382.CrossRefGoogle Scholar
Sims, P. A., Mann, D. G., and Medlin, L. K. 2006. Evolution of the diatoms: insight from fossil, biological and molecular data. Phycologia, 45(4):361402.CrossRefGoogle Scholar
Smetacek, V. 1999. Diatoms and the ocean carbon cycle. Protist, 150:2532.CrossRefGoogle ScholarPubMed
Singh, R. S., Stoermer, E. F., and Kar, R. 2007. Earliest freshwater diatoms from the deccan intertrappen (Maastrichtian) sediments of India. Micropaleontology, 52(6):545551.CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Muyzer, G., Abbas, B., Rampen, S. W., Massé, G., Allard, W. G., Belt, S. T., Robert, J., Rowland, S. J., Moldowan, J. M., Barbanti, S. M., Fago, F. J., Denisevich, P., Dahl, J., Trindade, L. A. F., and Schouten, S. 2004. The rise of the Rhizosolenoid diatoms. Science, 304:584587.CrossRefGoogle Scholar
Sörhannus, U. 2004. Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU rRNA sequences. Cladistics, 20:241247.CrossRefGoogle ScholarPubMed
Stoermer, E.F., and Smol, J. P. J. P. 1999. The diatoms: applications in the Earth and environmental sciences. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Strelnikova, N. I., 1966. Revision of Late Cretaceous representatives of the genera Gladius Schulz and Pyxilla Greville (Bacillariophyta). Novosti Sistematiki Nizshikh Rasteni; Botanicheskii Institut, Akademiia Nauk S.S.S.R., 2336. (In Russian).Google Scholar
Strelnikova, N. I. 1974. Diatomei pozdnego mela [Late Cretaceous diatoms of western Siberia], Acad. Nauk, U.S.S.R., Roy 8, 202 pp. (In Russian).Google Scholar
Strelnikova, N. I. 1975. Diatoms of the Cretaceous Period. Third Symposium on Recent and Fossil Diatoms (Kiel). Beihefte, Nova Hedwigia, 53:311321.Google Scholar
Strelnikova, N. I. 1990. Evolution of diatoms during the Cretaceous and Paleogene periods, p. 195204. In Simola, H. (ed.), Proceedings of the 10th International Diatom Symposium, Joensuu, Finland 1988. O. Koeltz Scientific Books, Koenigstein.Google Scholar
Strelnikova, N. I. 1991. Evolution of marine diatoms: Cretaceous and Paleogene. Algologia, 1:6572. (In Russian).Google Scholar
Strelnikova, N. I., and Martirosjan, G. N. 1981. Lower Cretaceous diatom algae from Stavropol. Viestnik LGU, Ser. Biologya, 3:5257. (In Russian).Google Scholar
Strelnikova, N. I., and Lastivka, T. V. 1999. The problems of the origin of marine and freshwater diatoms, p. 113123. In Mayama, S., Idei, M. and Koizumi, I. (eds.), Proceedings of 14th International Diatom Symposium, Koeltz Scientific Books, Koenigstein.Google Scholar
Takahashi, O., Kimura, M., Ishii, A., and Mayama, S. 1999. Upper Cretaceous diatoms from central Japan, p. 145155. In Mayama, S., Idei, M., and Koizumi, I. (eds.), Proceedings of 14th International Diatom Symposium, Koeltz Scientific Books, Koenigstein.Google Scholar
Tapia, P. M., and Harwood, D. M. 2002. Upper Cretaceous diatom biostratigraphy of the Arctic archipelago and northern continental margin, Canada. Micropaleontology, 48(4):303342.CrossRefGoogle Scholar
Treguer, P., Nelson, D. M., Van Bennekom, A. J., Demaster, D. J., Leynaert, A. and Queguiner, B. 1995. The silica balance in the ocean: a reestimate. Science, 268:375379.CrossRefGoogle Scholar
Wall, J. H. 1975. Diatoms and radiolarians from the Cretaceous system of Alberta, a preliminary report, p. 391410. In Caldwell, W. G. E. (ed.), The Cretaceous System in the Western Interior of North America, Geological Association of Canada Special Paper 13.Google Scholar
Williams, D. M. and Kociolek, J. P. 2007. Pursuit of a natural classification of diatoms: history, monophyly and the rejection of paraphyletic taxa. European Journal of Phycology, 42(3):313319.CrossRefGoogle Scholar