Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T16:23:32.992Z Has data issue: false hasContentIssue false

Clumped Isotope Paleothermometry: Principles, Applications, and Challenges

Published online by Cambridge University Press:  21 July 2017

Hagit P. Affek*
Affiliation:
Department of Geology & Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520 USA. [email protected]
Get access

Abstract

Clumped isotopes geochemistry measures the thermodynamic preference of two heavy, rare, isotopes to bind with each other. This preference is temperature dependent, and is more pronounced at low temperatures. Carbonate clumped isotope values are independent of the carbonate δ13C and δ18O, making them independent of the carbon or oxygen composition of the solution from which the carbonate precipitated. At equilibrium, it is therefore a direct proxy for the temperature in which the carbonate mineral formed. In most cases, carbonate clumped isotopes record the temperature of carbonate formation, irrespective of the mineral form (calcite, aragonite, or bioapatite) or the organism making it. The carbonate formation temperatures obtained from carbonate clumped isotope analysis can be used in conjunction with the δ18O of the same carbonate, to constrain the oxygen isotope composition of the water from which the carbonate has precipitated. There are, however, cases of deviation from thermodynamic equilibrium, where both clumped and oxygen isotopes are offset from the expected values. Such carbonates must be characterized and calibrated separately. For deep-time applications, special care must be paid to the preservation of the original signal, in particular with respect to diagenetic alteration associated with atomic scale diffusion that may be undetectable by common tests for diagenesis.

Type
Research Article
Copyright
Copyright © 2012 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affek, H. P., Bar-Matthews, M., Ayalon, A., Matthews, A., and Eiler, J. M. 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. Geochimica et Cosmochimica Acta, 72(22):53515360.Google Scholar
Affek, H. P., and Eiler, J. M. 2006. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochimica et Cosmochimica Acta, 70:112.CrossRefGoogle Scholar
Affek, H. P., Xu, X., and Eiler, J. M. 2007. Seasonal and diurnal variations of 13C18O16O in air: Initial observations from Pasadena, CA. Geochimica et Cosmochimica Acta, 71(21):50335043.Google Scholar
Affek, H. P., Zaarur, S., Kluge, T., Matthews, A., Burstyn, Y., Ayalon, A., and Bar-Matthews, M. 2011. Quantifying Kinetic Isotope Effect in Speleothems Through Clumped and Oxygen Isotopes in Laboratory Precipitation Experiments. Abstract PP21D–03 presented at 2011 Fall Meeting, AGU. San Francisco, Calif., 5–9 Dec. Google Scholar
Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K., and Farabegoli, W. 2012. The end Permian mass extinction: a rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, 322–3:121144.CrossRefGoogle Scholar
Bristow, T. F., Bonifacie, M., Derkowski, A., Eiler, J. M., and Grotzinger, J. P. 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature, 474:6872.Google Scholar
Came, R. E., Eiler, J. M., Veizer, J., Azmy, K., Brand, U., and Weidman, C. R. 2007. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature, 449:198202.Google Scholar
Csank, A. Z., Tripati, A. K., Patterson, W. P., Eagle, R. A., Rybczynski, N., Ballantyne, A. P., and Eiler, J. M. 2011. Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies. Earth and Planetary Science Letters, 304:291299.CrossRefGoogle Scholar
Daëron, M., Guo, W., Eiler, J., Genty, D., Blamart, D., Boch, R., Drysdale, R., Maire, R., Wainer, K., and Zanchetta, G. 2011. 13C18O clumping in speleothems: Observations from natural caves and precipitation experiments. Geochimica et Cosmochimica Acta, 75:33033317.CrossRefGoogle Scholar
Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M. 2011. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2 . Geochimica et Cosmochimica Acta, 75:71177131.CrossRefGoogle Scholar
Dennis, K. J., and Schrag, D. P. 2010. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochimica Acta, 74:41104122.Google Scholar
Douglas, P. M., Ivany, L., Pagani, M., Hollis, C. J., Beu, A. G., and Affek, H. P. 2011. Eocene Southern High Latitude Sea Surface Temperatures: New Constraints from Clumped Isotope Paleothermometry. Abstract PP33B–1924 presented at 2011 Fall Meeting, AGU. San Francisco, Calif., 5–9 Dec. Google Scholar
Eagle, R. A., Schauble, E. A., Tripati, A. K., Tutken, T., Hulbert, R. C., and Eiler, J. M. 2010. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. Proceedings of the National Academy of Sciences of the United States of America, 107:1037710382.CrossRefGoogle Scholar
Eagle, R. A., Tuetken, T., Martin, T. S., Tripati, A. K., Fricke, H. C., Connely, M., Cifelli, R. L., and Eiler, J. M. 2011. Dinosaur Body Temperatures Determined from Isotopic (13C-18O) Ordering in Fossil Biominerals. Science, 333):443445.CrossRefGoogle ScholarPubMed
Eiler, J. M. 2007. ‘Clumped-isotope’ geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262:309327.Google Scholar
Eiler, J. M. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30:35753588.Google Scholar
Eiler, J. M., and Schauble, E. 2004. 18O13C16O in Earth's atmosphere. Geochimica et Cosmochimica Acta, 68:47674777.Google Scholar
Elderfield, H., and Ganssen, G. 2000. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405:442445.CrossRefGoogle ScholarPubMed
Emiliani, C. 1966. Isotopic paleotemperatures. Science, 154:851857.Google Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C. 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64:13151325.Google Scholar
Erez, J. 1978. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature, 273:199202.Google Scholar
Ferry, J. M., Passey, B. H., Vasconcelos, C., and Eiler, J. M. 2011. Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39:571574.Google Scholar
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W. 2011. The Magnitude and Duration of Late Ordovician–Early Silurian Glaciation. Science, 331:903906.Google Scholar
Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., Macfadden, B., Eiler, J., Ghosh, P., and Mulch, A. 2008. Rise of the Andes. Science, 320:13041307.CrossRefGoogle ScholarPubMed
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W. F., Schauble, E. A., Schrag, D., and Eiler, J. M. 2006a. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70:14391456.Google Scholar
Ghosh, P., Eiler, J., Campana, S. E., and Feeney, R. F. 2007. Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochimica et Cosmochimica Acta, 71:27362744.Google Scholar
Ghosh, P., Garzione, C. N., and Eiler, J. M. 2006b. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311:511515.Google Scholar
Grossman, E. L., and Ku, T. L. 1986. Oxygen and Carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology, 59:5974.Google Scholar
Guo, W. 2008. Carbonate Clumped Isotope Thermometry: Application to carbonaceous chondrites and effects of kinetic isotope fractionation. , Caltech, Pasadena, CA.Google Scholar
Guo, W., and Eiler, J. M. 2007. Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71:55655575.Google Scholar
Guo, W. F., Mosenfelder, J. L., Goddard, W. A., and Eiler, J. M. 2009. Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements. Geochimica et Cosmochimica Acta, 73:72037225.Google Scholar
Halevy, I., Fischer, W. W., and Eiler, J. M. 2011. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4°C in a near-surface aqueous environment. Proceedings of the National Academy of Sciences of the United States of America, 108:1689516899.Google Scholar
Hendy, C. H. 1971. The isotopic geochemistry of speleothems—I. The calculation of the effects of different models of formation on the isotopic composition of speleothems and their applicability as palaeoclimativ indicators. Geochimica et Cosmochimica Acta, 35:801824.Google Scholar
Henkes, G. A., Passey, B. H., Wanamaker, A. D., Grossman, E. L., Ambrose, W. G., and Carroll, M. L. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. submitted to Geochimica et Cosmochimica Acta. Google Scholar
Herbert, T. D. 2003. Alkenone paleotemperature determinations, p. 391431 In Holland, H. D. and Turekian, K. K. (eds.), Treatise on Geochemistry. Elsevier-Pergamon, Oxford.Google Scholar
Huntington, K., Eiler, J., Affek, H., Guo, W., Bonifacie, M., Yeung, L., Thiagarajan, N., Passey, B., Tripati, A., Daeron, M., and Came, R. 2009. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. Journal of Mass Spectrometry, 44:13181329.Google Scholar
Huntington, K., Wernicke, B., and Eiler, J. 2010. The influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped-isotope thermometry. Tectonics, 29:TC3005.Google Scholar
Huntington, K. W., Budd, D. A., Wernicke, B. P., and Eiler, J. M. 2011. Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. Journal of Sedimentary Research, 81:656669.Google Scholar
Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., and Moody, R. M. 2008. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geological Society of America Bulletin, 120:659678.Google Scholar
Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson, S. D. 2011. Warm, not super-hot, temperatures in the early Eocene subtropics. Geology, 39:771774.Google Scholar
Kim, J. H., Schouten, S., Hopmans, E. C., Donner, B., and Damste, J. S. S. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta, 72:11541173.Google Scholar
Kim, S. T., and O'Neil, J. R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16):34613475.Google Scholar
Kim, S. T., O'Neil, J. R., Hillaire-Marcel, C., and Mucci, A. 2007. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta, 71:47044715.CrossRefGoogle Scholar
Kluge, T., and Affek, H. P. 2011. Kinetic isotope effect in Bunker cave Holocene stalagmites, identified with Δ47 . In: Climate Change–The Karst Record (KR6 conference, Birmigham, UK), abstract volume, p. 77.Google Scholar
Kluge, T., and Affek, H. P. 2012. Quantifying kinetic fractionation in Bunker cave speleothems using Δ47. Quaternary Science Reviews, 49:8294.Google Scholar
Lea, D. W. 2003. Elemental and Isotopic Proxies of Past Ocean Temperatures, p. 365390 In Holland, H. D., and Turekian, K. K. (eds.), Treatise on Geochmistry. Elsevier-Pergamon, Oxford.Google Scholar
Lear, C. H., Elderfield, H., and Wilson, P. A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287:269272.CrossRefGoogle ScholarPubMed
Liu, Z., Pagani, M., Zinniker, D., Deconto, R., Huber, M., Brinkhuis, H., Shah, S. R., Lechie, R. M., and Pearson, A. 2009. Global cooling during the Eocene–Oligocene climate transition. Science, 323:11871190.Google Scholar
Mcconnaughey, T. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53:151162.Google Scholar
Mcconnaughey, T. 1989b. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53:163171.Google Scholar
Mccrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18:849857.Google Scholar
Meckler, A. N., Adkins, J. F., Eiler, J. M., and Cobb, K. M. 2009. Constraints from clumped isotope analyses of a stalagmite on maximum tropical temperature change through the late Pleistocene. Geochimica et Cosmochimica Acta, 73:A863A863.Google Scholar
Mickler, P. J., Stern, L. A., and Banner, J. L. 2006. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin, 118:6581.Google Scholar
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51:55475558.Google Scholar
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J. M. 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences of the United States of America, 107:1124511249.Google Scholar
Quade, J., Breecker, D. O., Daëron, M., and Eiler, J. 2011. The Paleoaltimetry of Tibet: An Isotopic Perspective. American Journal of Science, 311:77115.Google Scholar
Saenger, C. P., Affek, H. P., Felis, T., Thiagarajan, N., Lough, J. M., and Holcomb, M. Carbonate clumped isotope variability in shallow water corals: Temperature dependence and growth-related vital effects. Submitted to Geochimica et Cosmochimica Acta. Google Scholar
Schauble, E. A., Ghosh, P., and Eiler, J. M. 2006. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochimica et Cosmochimica Acta, 70:25102529.Google Scholar
Schmid, T. W. 2011. Clumped isotopes—a new tool for old questions: Case studies on biogenic and inorganic carbonates. Doctoral dissertation, ETH Zurich.Google Scholar
Schouten, S., Hopmans, E., Schefuss, E., and Damste, J. 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204:265274.Google Scholar
Suarez, M. B., Passey, B. H., and Kaakinen, A. 2011. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene. Geology, 39:11511154.Google Scholar
Swanson, E. M., Wernicke, B. P., Eiler, J. M., and Losh, S. 2012. Temperatures and fluids on faults based on carbonate clumped-isotope thermometry. American Journal of Science, 312:121.Google Scholar
Thiagarajan, N., Adkins, J., and Eiler, J. 2011. Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochimica et Cosmochimica Acta, 75:44164425.Google Scholar
Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., and Eiler, J. M. 2010. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochimica et Cosmochimica Acta, 74:56975717.Google Scholar
Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar-Matthews, M., Vonhof, H., Dublyansky, Y., Pons-Branchu, E., Thomas, L., Van Calsteren, P., Quinif, Y., and Caillon, N. 2011. Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5. Quaternary Science Reviews, 30:130146.Google Scholar
Wang, Z., Schauble, E. A., and Eiler, J. M. 2004. Equilibrium thermodynamics of multiply-substituted isotopologues of molecular gases. Geochimica et Cosmochimica Acta, 68:47794797.CrossRefGoogle Scholar
Weijers, J. W. H., Schouten, S., Van Den Donker, J. C., Hopmans, E. C., and Sinninghe Damsté, J. H. 2007. Environmental controls on bacterial tetraether membrane lipid distributions in soils. Geochimica et Cosmochimica Acta, 71:703713.Google Scholar
Yeung, L. Y., Affek, H. P., Hoag, K. J., Guo, W. F., Wiegel, A. A., Atlas, E. L., Schauffler, S. M., Okumura, M., Boering, K. A., and Eiler, J. M. 2009. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation. Proceedings of the National Academy of Sciences of the United States of America, 106:1149611501.Google Scholar
Zaarur, S., Affek, H. P., and Stein, M. 2011a. Clumped isotopes thermometry in Melanopsis shells and its paleoclimate implications. Geophysical Research Abstracts, 13:EGU2011–2291–2, EGU General Assembly 2011.Google Scholar
Zaarur, S., Brandon, M. T., and Affek, H. P. In preparation. A refined calibration of carbonate clumped isotopes theremometer.Google Scholar
Zaarur, S., Olack, G., and Affek, H. P. 2011b. Paleo-environmental implication of clumped isotopes in land snail shells. Geochimica et Cosmochimica Acta, 75:68596869.Google Scholar