Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T06:54:18.545Z Has data issue: false hasContentIssue false

Amber

Published online by Cambridge University Press:  21 July 2017

Conrad C. Labandeira*
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution Washington, D.C. 20013 USA Department of Entomology, University of Maryland, College Park, MD 20742 USA
Get access

Abstract

The amber fossil record provides a distinctive, 320-million-year-old taphonomic mode documenting gymnosperm, and later, angiosperm, resin-producing taxa. Resins and their subfossil (copal) and fossilized (amber) equivalents are categorized into five classes of terpenoid, phenols, and other compounds, attributed to extant family-level taxa. Copious resin accumulations commencing during the early Cretaceous are explained by two hypotheses: 1) abundant resin production as a byproduct of plant secondary metabolism, and 2) induced and constitutive host defenses for warding off insect pest and pathogen attack through profuse resin production. Forestry research and fossil wood-boring damage support a causal relationship between resin production and pest attack. Five stages characterize taphonomic conversion of resin to amber: 1) Resin flows initially caused by biotic or abiotic plant-host trauma, then resin flowage results from sap pressure, resin viscosity, solar radiation, and fluctuating temperature; 2) entrapment of live and dead organisms, resulting in 3) entombment of organisms; then 4) movement of resin clumps to 5) a deposition site. This fivefold diagenetic process of amberization results in resin→copal→amber transformation from internal biological and chemical processes and external geological forces. Four phases characterize the amber record: a late Paleozoic Phase 1 begins resin production by cordaites and medullosans. A pre-mid-Cretaceous Mesozoic Phase 2 provides increased but still sparse accumulations of gymnosperm amber. Phase 3 begins in the mid-early Cretaceous with prolific amber accumulation likely caused by biotic effects of an associated fauna of sawflies, beetles, and pathogens. Resiniferous angiosperms emerge sporadically during the late Cretaceous, but promote Phase 4 through their Cenozoic expansion. Throughout Phases 3 and 4, the amber record of trophic interactions involves parasites, parasitoids, and perhaps transmission of diseases, such as malaria. Other recorded interactions are herbivory, predation, pollination, phoresy, and mimicry. In addition to litter, amber also captures microhabitats of wood and bark, large sporocarps, dung, carrion, phytotelmata, and resin substrates. These microhabitats are differentially represented; the primary taphonomic bias is size, and then the sedentary vs. wandering life habits of organisms. Organismic abundance from lekking, ant-refuse heaps, and pest outbreaks additionally contribute to bias. Various techniques are used to image and analyze amber, allowing assessment of: 1) ancient proteins; 2) phylogenetic reconstruction; 3) macroevolutionary patterns; and 4) paleobiogeographic distributions. Three major benefits result from study of amber fossil material, in contrast to three different benefits of compression-impression fossils.

Type
Research Article
Copyright
Copyright © 2014 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agee, H. R., and Patterson, R. S. 1983. Spectral sensitivity of stable, face, and horn flies and flies and behavioral responses of stable flies to visual traps (Diptera: Muscidae). Environmental Entomology, 12:18231828.Google Scholar
Alencar, J. C. 1982. Estudos silviculturais de uma população natural de Copaifera multijuga Hayne—Leguminosae, na Amazonia Central. 2. Produção de óleoresina. Acta Amazonica, 12:7589.CrossRefGoogle Scholar
Alimohammadian, H., Sahni, A., Putnaik, R., Rana, R. S., and Singh, H. 2005. First record of an exceptionally diverse and well-preserved amber-embedded biota from Lower Eocene (∼52 Ma) lignites, Vastan, Gujarat. Current Science, 89:13281330.Google Scholar
Allentoft, M. E., Schleuster, S. C., Holdaway, R. N., Hale, M. L., McLay, E., Oskam, C., Gilbert, M. T. P., Spencer, P., Willerslev, E., and Bunce, M. 2009. Identification of microsatellites from an ancient moa species using high-throughput (454) sequence data. BioTechniques, 46:195200 CrossRefGoogle ScholarPubMed
Alonso, J., Arillo, A., Barrón, E., Corral, J. C., Grimalt, J., López, J. F., Martínez-Delclòs, X., Ortuño, V., Peñalver, E., and Trincao, P. R. 2000. A new fossil resin with biological inclusions in Lower Cretaceous deposits from Álava (Northern Spain, Basque-Cantabrian Basin). Journal of Paleontology, 74:11581178.Google Scholar
Anderson, J. M., and Anderson, H. M. 2003. Heyday of the Gymnosperms: Systematics and Biodiversity of the Late Triassic Molteno Fructifications. Strelitzia 15. National Botanical Institute, Pretoria, South Africa.Google Scholar
Anderson, K. B., and LePage, B. 1995. Analysis of fossil resins from Axel Heiberg Island, Canadian Arctic, p. 170192. In Anderson, K. B. and Crelling, J. C. (eds.), Amber, Resinite, and Fossil Resins. American Chemical Society Symposium Series 617. American Chemical Society, Washington, D. C.CrossRefGoogle Scholar
Antoine, P. O., De Francheschi, D., Flynn, J. J., Nel, A., Baby, P., Benammi, M., Calderon, Y., Espurt, N., Goswami, A., and Salas-Gismondi, R. 2006. Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proceedings of the National Academy of Sciences of the United States of America, 103:1359513600.Google Scholar
Armbruster, W. S. 1984. The role of resin in angiosperm pollination: ecological and chemical considerations. American Journal of Botany, 71:11491160.Google Scholar
Ascaso, C., Wierzchos, J., Corral, J. C., López, R., and Alonso, J. 2003. New applications of light and electron microscopic techniques for the study of microbiological inclusions in amber. Journal of Paleontology, 77:11821192.Google Scholar
Ascaso, C., Wierzchos, J., Speranza, M., Gutiérrez, J. C., González, A. M., de los Rios, A., and Alonso, J. 2005. Fossil protists and fungi in amber and rock substrates. Micropaleontology, 51:5972.CrossRefGoogle Scholar
Ash, S. R., and Savidge, R. A. 2004. The bark of the Late Triassic Araucarioxylon arizonicum tree from Petrified Forest National Park, Arizona. International Association of Wood Anatomists Journal, 25:349368.Google Scholar
Austin, J. J., Ross, A. J., Smith, A. B., Fortey, R. A., and Thomas, R. H. 1997a. Problems of reproducibility—does geologically ancient DNA survive in amber-preserved insects? Proceedings of the Royal Society of London B-Biological Sciences, 264:467474.CrossRefGoogle ScholarPubMed
Austin, J. J., Smith, A. B., and Thomas, R. H. 1997b. Palaeontology in a molecular world: the search for authentic ancient DNA. Trends in Ecology and Evolution, 12:303306.Google Scholar
Azar, D. 1997. A new method for extracting plant and insect fossils from Lebanese amber. Palaeontology, 40:10271029.Google Scholar
Azar, D., Gèze, R., El-Samrani, A., Maalouly, J., and Nel, A. 2010. Jurassic amber in Lebanon. Acta Geologica Sinica, 84:977983.Google Scholar
Baroni-Urbani, C., and Graeser, S. 1987. REM-Analysen an einer pyritisierten Ameise aus Baltischen Bernstein. Stuttgarter Beitrage zur Naturkunde B, 133:116.Google Scholar
Beck, C. W. 1999. The chemistry of amber. Estudios de Museo Ciencias Naturales del Álava, 14:3348.Google Scholar
Beimforde, C., Schäfer, N., Dörfelt, H., Nascimbene, P. C., Singh, H., Heinrichs, J., Reitner, J., Rana, R. S., and Schmidt, A. R. 2011. Ectomycorrhizas from a Lower Eocene angiosperm forest. New Phytologist, 192:988996.Google Scholar
Beimforde, C., and Schmidt, A. R. 2011. Microbes in resinous habitats: a compilation from modern and fossil resins, p. 391407. In Reitner, J., Quéric, N.-V., and Arp, G. (eds.), Advances in Stromatolite Biology. Lecture Notes in Earth Sciences, 131. Springer.Google Scholar
Bickel, D. J. 2009. The first species described from Cape York amber, Australia: Chaetogonopteron bethnorrisae n. sp. (Diptera: Dolichopodidae). Denisia, 26:3539.Google Scholar
Bisulca, C., Nascimbene, P. C., Elkin, L., and Grimaldi, D. 2012. Variation in the deterioration of fossil resins and implications for the conservation of fossils in amber. American Museum Novitates, 3734:119.Google Scholar
Böcher, J. 1995. Palaeoentomology of the Kap København Formation, a Plio-Pleistocene sequence in Peary Land, North Greenland. Meddelelser om Grønland, Geoscience, 33:182.CrossRefGoogle Scholar
Borkent, A. 1995. Biting Midges in the Cretaceous Amber of North America (Diptera: Ceratopogonidae). Backhuys, Leiden, Netherlands.Google Scholar
Borkent, A. 2000. Further biting midges (Diptera: Ceratopogonidae) from Upper Cretaceous New Jersey amber, p. 453472. In Grimaldi, D. (ed.), Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden, Netherlands.Google Scholar
Bosselaers, J., Dierick, M., Cnudde, V., Masschaele, B., van Hoorebeke, L., and Jacobs, P. 2010. High-resolution X-ray computed tomography of an extant new Donuea (Araneae: Liocranidae) species in Madagascaran copal. Zootaxa, 2427:2535.Google Scholar
Boucot, A. J., and Poinar, G. O. Jr. 2010. Fossil Behavior Compendium. CRC Press, Boca Raton, Florida.CrossRefGoogle Scholar
Brasero, N., Nel, A., and Michez, D. 2009. Insects from the early Eocene amber of Oise (France): diversity and palaeontological significance. Denisia, 26:4152.Google Scholar
Bray, P. S., and Anderson, K. B. 2009. Identification of Carboniferous (320 million years old) Class 1c amber. Science, 326:132134.Google Scholar
Briggs, D. E. G., and Kear, A. J. 1993. Fossilization of soft tissues in the laboratory. Science, 259:14391442.Google Scholar
Bright, D. E., and Poinar, G. O. Jr. 1994. Scolytidae and Platypodidae (Coleoptera) from Dominican Republic amber. Annals of the Entomological Society of America, 87:170194.CrossRefGoogle Scholar
Campbell, R. 1985. Plant Microbiology. Arnold, London.Google Scholar
Cano, R. J., and Boruki, M. K. 1995. Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber. Science, 268:10601064.Google Scholar
Cano, R. J., Poinar, H. N., Pieniazek, N. J., Acra, A., and Poinar, G. O. Jr. 1993. Amplification and sequencing of DNA from a 125–135-million-year-old weevil. Nature, 363:536538.Google Scholar
Cano, R. J., Poinar, H. N., Roubik, D. W., and Poinar, G. O. Jr. 1992. Enzymatic amplification and nucleotide sequencing of portions of the 18S rRNA gene of the bee Proplebeia dominicana (Apidae: Hymenoptera) isolated from 25–40 million year old Dominican amber. Medical Science Research, 20:619622.Google Scholar
Carpenter, F. M. 1992. Superclass Hexapoda. In Moore, R. C., Kaesler, R. L., Brosius, E., Keim, J., and Priesner, J. (eds.), Treatise on Invertebrate Paleontology, Part 4 (Arthropoda 4), volumes 3 and 4. Geological Society of America and The University of Kansas, Boulder, CO, and Lawrence, KS.Google Scholar
Carpenter, F. M., Folsom, J. W., Essig, E. O., Kinsey, A. C., Brues, C. T., Boesel, M. W., and Ewing, H. E. 1937. Insects and arachnids from Canadian amber. University of Toronto Studies in Geology Series, 40:762.Google Scholar
Chaler, R., and Grimalt, J. O. 2004. Fingerprinting of Cretaceous higher plant resins by infrared spectroscopy and gas chromatography coupled to mass spectrometry. Phytochemical Analysis, 16:446450.Google Scholar
Churcher, C. S. 1966. The insect fauna from the Talara tar seeps, Peru. Canadian Journal of Zoology, 44:985993.Google Scholar
Compton, S. G., Ball, A. D., Collinson, M. E., Hayes, P., Rasnitsyn, A. P., and Ross, A. J. 2010. Ancient fig wasps indicate at least 34 Myr of stasis in their mutualism with fig trees. Biology Letters, 6:838842.Google Scholar
Corral, J. C. 1999. La conservación del ámbar. Revisión de los principals agentes de deterioro y soluciones publicados. Estudios del Museo Ciencias Naturales de Álava, 14:2332.Google Scholar
Corral, J. C., López, R., and Alonso, J. 1999. El ámbar Cretácico de Álava (Cuenca Basco-Cantabrica, norte de España). Su colecta y preparación. Estudios del Museo Ciencias Naturales de Álava, 14:721.Google Scholar
Cotter, H. van, and Blanchard, R. O. 1982. Beech bark flora. Mycologia, 74:836843.Google Scholar
Cowan, R. A., and Polhill, R. M. 1981. Detarieae, p. 117134. In Polhill, R. M. and Raven, P. R. (eds.), Advances in Legume Systematics, Part 1. Royal Botanic Gardens, Kew, U.K. Google Scholar
Crepet, W. L., Nixon, K. C., Friis, E. M., and Freudenstein, J. V. 1991. Oldest fossil flowers of hamamelidaceous affinity, from the Late Cretaceous of New Jersey. Proceedings of the National Academy of Sciences of the United States of America, 89:89868989.Google Scholar
Crichton, W. R. B., and Carrió, V. 2007. Photography of amber inclusions in the collections of the National Museums of Scotland. Scottish Journal of Geology, 43:8996.Google Scholar
Crowson, R. A. 1981. The Biology of the Coleoptera. Academic Press, London.Google Scholar
Dalla Veccia, F. M., and Chiappe, L. M. 2002. First avian skeleton from the Mesozoic of Northern Gondwana. Journal of Vertebrate Paleontology, 22:856860.Google Scholar
De Palma, R., Cichocki, F., Dierick, M., and Feeney, R. 2010. Preliminary notes on the first recorded amber insects from the Hell Creek Formation. Journal of the Paleontological Sciences, PS.C.10.0001. www.aaps-journal.org/pdf/JPS-C-10-0001.pdf Google Scholar
DeSalle, R., Barcia, M., and Wray, C. 1993. PCR jumping in clones of 30 million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia, 49:906909.Google Scholar
DeSalle, R., Gatesy, J., Wheeler, W. and Grimaldi, D. 1992. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science, 257:19331936.CrossRefGoogle ScholarPubMed
Ding, Q., Labandeira, C. C., and Ren, D. 2013. Herbivore persistence and change on broad-leaved conifers between the Middle Jurassic and Early Cretaceous of northeastern China. Geological Society of America Abstracts with Programs, 45(7):699.Google Scholar
Dunlop, J. A. 2010. Bitterfeld amber, p. 5767. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Dunlop, J. A., Penney, D., Dalüge, N., Jäger, P., McNeil, A., Bradley, R. S., Withers, P. J., and Preziosi, R. F. 2011. Computed tomography recovers data from historical amber: an example from huntsman spiders. Naturwissenschaften, 98:519527.CrossRefGoogle Scholar
Dunlop, J. A., Wirth, S., Penney, D., McNeil, A., Bradley, R. S., Withers, P. J., and Preziosi, R. F. 2012. A minute fossil phoretic mite recovered by phase-contrast X-ray microtomography. Biology Letters, 8:457460.Google Scholar
Dunne, J. A., Labandeira, C. C., and Williams, R. J. 2014. Highly resolved middle Eocene food webs show early development of modern trophic structure after the end-Cretaceous extinction. Proceedings of the Royal Society of London B-Biological Sciences, 281(1782):20133280. doi: 10.1098/rspb.2013.3280 Google Scholar
Durham, J. W., and Hurd, P. D. 1957. Fossiliferous amber of Chiapas, Mexico. Bulletin of the Geological Society of America, 68:1824.Google Scholar
Edgecombe, G. D., Vahtera, V., Stock, S. R., Kallonen, A., Xiao, X., Rack, A., and Giribet, G. 2012. A scolopocryptoid centipede (Chilopoda: Scolopendromorpha) from Mexican amber: synchrotron microtomography and phylogenic placement using a combined morphological and molecular data set. Zoological Journal of the Linnean Society, 166:768786.Google Scholar
Engel, M. S. 2001. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History, 259:1192.Google Scholar
Fahn, A. 1979. Secretory Tissues in Plants. Academic Press, London.Google Scholar
Farrell, B. D., Dussourd, D. E., and Mitter, C. 1991. Escalation of plant defense: Do latex and resin canals spur plant diversification? American Naturalist, 138:881900.Google Scholar
Fatzinger, C. W. 1985. Attraction of the black turpentine beetle (Coleoptera: Scolytidae) and other forest Coleoptera to turpentine-based traps. Environmental Entomology, 14:768775.Google Scholar
Franz, N. M., and Engel, M. S. 2010. Can higher-level phylogenies of weevils explain their evolutionary success? A critical review. Systematic Entomology, 35:597606.CrossRefGoogle Scholar
García-Gimeno, V., and Peñalver, E. 2007. Faunal populations in tank bromeliads in the Miocene and description of a new form of limoniid flies of the subgenus Trentepohlia (Paramongoma) in Dominican amber. Abstract Book, Fossils X3, International Amber Congress, Vitoria-Gastiez, Spain, p. 214.Google Scholar
Gastaldo, R. A., Bearce, S., Degges, C. W., Hunt, R. J., Peebles, M. W., and Violette, D. L. 1989. Biostratinomy of a Holocene oxbow lake: A backswamp to mid-channel transect. Review of Paleobotany and Palynology, 58:4759.CrossRefGoogle Scholar
Gastaldo, R. A., Douglass, D. P., and McCarroll, S. M. 1987. Origin, characteristics, and provenance of plant macrodetritus in a Holocene crevasse splay, Mobile Delta, Alabama. PALAIOS, 2:229240.Google Scholar
Gastaldo, R. A., and Huc, A. Y. 1992. Sediment facies, depositional environments, and distribution of phytoclasts in the Recent Mahakam River Delta, Kalimantan, Indonesia. PALAIOS, 7:574591.Google Scholar
Girard, V., Néraudeau, D., Adl, S. M., and Breton, G. 2011. Protist-like inclusions in amber, as evidenced by Charentes amber. European Journal of Protistology, 47:5966.Google Scholar
Girard, V., Schmidt, A. R., Saint Martin, S., Struwe, S., Perrichot, V., Saint Martin, J.-P., Grosheny, D., Breton, G., and Néraudeau, D. 2008. Evidence for marine microfossils from amber. Proceedings of the National Academy of Sciences of the United States of America, 105:1742617429.Google Scholar
Girard, V., Schmidt, A. R., Struwe, S., Perrichot, V., Breton, G., and Néraudeau, D. 2009. Taphonomy and palaeoecology of mid-Cretaceous amber-preserved microorganisms from southwestern France. Geodiversitas, 31:153162.CrossRefGoogle Scholar
Gonçalves-Alvim, S. D. 2001. Resin-collecting bees (Apidae) on Clusia palmicida (Clusiaceae) in a riparian forest in Brazil. Journal of Tropical Ecology, 17:149153.Google Scholar
Gonzalez, V. H., and Griswold, T. L. 2011. Taxonomic notes on the small resin bee Hyphantridioides subgenus Michanthidium (Hymenoptera, Megachilidae). Zookeys, 117:5158.Google Scholar
Greenblatt, C. L., Baum, J., Klein, B. Y., Nachshon, S., Koltunov, V., and Cano, R. J. 2004. Micrococcus luteus—survival in amber. Microbial Ecology, 48:120127.Google Scholar
Greenwalt, D., Goreva, Y. S., Sijlström, S. M., Rose, T., and Harbach, R. E. 2013. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proceedings of the National Academy of Sciences of the United States of America, 110:1849618500.Google Scholar
Greenwalt, D., and Labandeira, C. C. 2013. The amazing fossil insects of the Eocene Kishenehn Formation in northwestern Montana. Rocks & Minerals, 88:434439.Google Scholar
Grimaldi, D. A. 1995. The age of Dominican amber, p. 203217. In Anderson, K. G., and Crelling, J. C. (eds.), Amber, Resinite and Fossil Resins. American Chemical Society Symposium Series, 617. American Chemical Society, Washington, D.C. Google Scholar
Grimaldi, D. A. 1996. Amber: Window to the Past. Abrams, New York.Google Scholar
Grimaldi, D. A. 2003. First amber fossils of the extinct family Protopsyllidiidae, and their phylogenetic significance among Hemiptera. Insect Systematics and Evolution, 34:329344.Google Scholar
Grimaldi, D. A., Bonwich, E., Delannoy, M., and Doberstein, S. 1994. Electron microscopic studies of mummified tissues in amber fossils. American Museum Novitates, 3097:131.Google Scholar
Grimaldi, D. A., and Engel, M. S. 2005. Evolution of the Insects. Cambridge University Press, New York.Google Scholar
Grimaldi, D. A., Engel, M. S., and Nascimbene, P. C. 2002. Fossiliferous Cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates, 3361:171.Google Scholar
Grimaldi, D., and Johnson, A. 2014. The long-tongued Cretaceous scorpionfly Parapolycentropus Grimaldi and Rasnitsyn (Mecoptera: Pseudopolycentropodidae): new data and interpretations. American Museum Novitates, 3973:123.Google Scholar
Grimaldi, D., Kathirithamby, J., and Schawaroch, V. 2005a. Strepsiptera and triungula in Cretaceous amber. Insect Systematics and Evolution, 36:120.Google Scholar
Grimaldi, D. A., and Nascimbene, P. C. 2010. Raritan (New Jersey) amber, p. 167191. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Grimaldi, D., Nguyen, T., and Ketcham, R. 2000a. Ultra-High-Resolution X-Ray Computed Tomography (UHR CT) and the study of fossils in amber, p. 7791. In Grimaldi, D. (ed.), Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden, Netherlands.Google Scholar
Grimaldi, D. A., and Ross, A. J. 2004. Raphidiomimula, an enigmatic new cockroach in Cretaceous amber from Myanmar (Burma) (Insecta: Blattodea: Raphidiomimidae). Journal of Systematic Palaeontology, 2:101104.Google Scholar
Grimaldi, D. A., Shedrinsky, A., and Wampler, T. P. 2000b. A remarkable deposit of fossiliferous amber from the Upper Cretaceous (Turonian) of New Jersey, p. 176. In Grimaldi, D. (ed.), Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden, Netherlands.Google Scholar
Grimaldi, D., Zhang, J., Fraser, N. C., and Rasnitsyn, A. 2005b. Revision of the bizarre Mesozoic scorpionflies in the Pseudopolycentropodidae (Mecopteroidea). Insect Systematics and Evolution, 36:443458.Google Scholar
Guo, S. 1991. A Miocene trace fossil of an insect from Shanwang Formation in Linqu, Shandong. Acta Palaeontologica Sinica, 30:739742.Google Scholar
Gutierrez, G., and Marin, A. 1998. The most ancient DNA recovered from amber-preserved specimen may not be as ancient as it seems. Molecular Biology & Evolution, 15:926929.Google Scholar
Hand, W., Archer, M., Bickel, D., Creaser, P., Dettmann, M., Godthelp, H., Jones, A., Norris, B., and Wicks, D. 2010. Australian Cape York amber, p. 6979. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Hebsgaard, M. B., Phillips, M. J., and Willerslev, E. 2005. Geologically ancient DNA: fact or artefact? Trends in Microbiology, 13:212220.Google Scholar
Heethoff, M., Helfen, L., and Norton, R. A. 2009. Description of Neoliodes dominicus n. sp. (Acari, Oribatida) from Dominican amber, aided by synchrotron X-ray microtomography. Journal of Paleontology, 83:153159.Google Scholar
Henderickx, H., Bosselaers, J., Pauwells, E., Van Hoorebeke, L., and Boone, M. 2013. X-ray micro-CT reconstruction reveals eight antennomeres in a new fossil taxon that constitutes a sister clade to Dundoxenos and Triozera (Strepsiptera: Corioxenidae). Paleontologia Electronica, 16(3):29A. palaeo-electronica.org/content/2013/552-a-new-strepsiptera-genus Google Scholar
Henderickx, H., Cnudde, V., Masschaele, B., Dierick, M., Vlassenbroeck, J., and Van Hoorebeke, L. 2006. Description of a new fossil Pseudogarypus (Pseudoscorpiones: Pseudogarypidae) with the use of X-ray micro-CT to penetrate opaque amber. Zootaxa, 1305:4150.Google Scholar
Henwood, A. 1992a. Soft-part preservation of beetles in Tertiary amber from the Dominican Republic. Palaeontology, 35:901912.Google Scholar
Henwood, A. 1992b. Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber. PALAIOS, 7:203212.Google Scholar
Henwood, A. 1993a. Recent plant resins and the taphonomy of organisms in amber: a review. Modern Geology, 19:3559.Google Scholar
Henwood, A. 1993b. Ecology and taphonomy of Dominican Republic amber and its inclusions. Lethaia, 26:237245.Google Scholar
Heywood, V. H. 1993. Flowering Plants of the World. Oxford University Press, New York.Google Scholar
Hillis, W. E. 1987. Heartwood and Tree Exudates. Springer-Verlag, Berlin.Google Scholar
Hoffeins, H. W. 2001. On the preparation and conservation of amber inclusions in artificial resin. Polish Journal of Entomology, 70:215219.Google Scholar
Hölldobler, B., and Wilson, E. O. 1990. The Ants. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Hong, Y. 2002. Amber Insects of China. Beijing Science and Technology Press, Beijing, China.Google Scholar
Horvath, G., and Kriska, G. 2008. Polarization vision in aquatic insects and ecological traps for polaro-tactic insects, p. 204229. In Lancaster, J. and Briers, P. A. (eds.), Aquatic Insects: Challenges to Populations. C.A.B. International, Wallingford, U.K. Google Scholar
Hueber, F. M., and Langenheim, J. 1986. Dominican amber tree had African ancestors. Geotimes, 31:810.Google Scholar
Hughes, D., Wappler, T., and Labandeira, C. C. 2011. Life after death: Ancient death-grip leaf scars reveal ant-fungal parasitism. Biology Letters, 7:6770.Google Scholar
Janzen, J.-W. 2002. Arthropods in Baltic Amber. Ampyx-Verlag, Halle, Germany.Google Scholar
Jarzembowski, E. A. 1990. A boring beetle from the Wealden of the Weald, p. 373377. In Boucot, A. J. (ed.), Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam.Google Scholar
Johnson, L. K. 1983. Trigona fulviventris (abeja atarrá, abeja jicore, culo de vaca, trigona, stingless bee), p. 684687. In Janzen, D. A. (ed.), Costa Rican Natural History. University of Chicago Press, Chicago, Illinois.Google Scholar
Jones, J. M., and Murchison, D. G. 1963. The occurrence of resinite in bituminous coals. Economic Geology, 58:263273.Google Scholar
Jordal, B. H., Sequeira, A. S., and Cognato, A. I. 2011. The age and phylogeny of wood boring weevils and the origin of subsociality. Molecular Phylogenetics and Evolution, 59:708724.Google Scholar
Kehlmaier, C., Dierick, M., and Skevington, J. H. 2014. Micro-CT studies of inclusions reveal internal genitalic features of big-headed flies, enabling a systematic placement of Metanephrocerus Aczél, 1948 (Insecta: Diptera: Pipunculidae). Arthropod Systematics & Phylogeny, 72:2336.Google Scholar
Kirejtshuk, A. G., Azar, D., Beaver, R. A., Mandelshtam, M. Y., and Nel, A. 2009. The most ancient bark beetle known: a new tribe, genus and species from Lebanese amber (Coleoptera, Curculionidae, Scolytinae). Systematic Entomology, 34:101112.Google Scholar
Klepzig, K. D., Robison, D. J., Fowler, G., Minchin, P. R., Hain, F. P., and Allen, H. L. 2005. Effects of mass inoculation on induced oleoresin response in intensively managed loblolly pine. Tree Physiology, 25:681688.Google Scholar
Knight, T. K., Bingham, P. S., Grimaldi, D. A., Anderson, K., Lewis, R. D., and Savrda, C. E. 2010. A new Upper Cretaceous (Santonian) amber deposit from the Eutaw Formation of eastern Alabama, U.S.A. Cretaceous Research, 31:8593.Google Scholar
Kohring, R. 1995. Fossile Bakterien und Pilzsporen aus den Baltischen Bernstein. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Monatshefte 1995(6):321335.Google Scholar
Koller, B., Schmitt, J. M., and Tischendorf, G. 2005. Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amber. Proceedings of the Royal Society of London B-Biological Sciences, 272:121126.Google Scholar
Kosanke, R. M., and Harrison, J. A. 1957. Microscopy of the resin rodlets of Illinois coal. Illinois Geological Survey Circular, 234:114.Google Scholar
Kosmowska-Ceranowicz, B. 1996. Die tertiären und quartiären Bernsteinvorkommen in Polen, p. 299310. In Ganzelewski, M., and Slotta, R. (eds.), Bernstein: Tränen der Götter. Deutsches Bergbau-Museum, Bochum.Google Scholar
Koteja, J. 1996. Syninclusions. Inclusion-Wrostek, 22:1012.Google Scholar
Koteja, J. 2004. Scale insects (Hemiptera: Coccinea) from Cretaceous Myanmar (Burmese) amber. Journal of Systematic Palaeontology, 2:109114.Google Scholar
Koteja, J., and Azar, D. 2008. Scale insects from Lower Cretaceous amber of Lebanon (Hemiptera: Sternorrhyncha: Coccinea). Alavesia, 2:133167.Google Scholar
Kowalewska, M., and Szwedo, J. 2009. Examination of the Baltic amber inclusion surface using SEM techniques and X-ray microanalysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 271:287291.Google Scholar
Krzemińska, E., Krzemińska, E., Haenni, J.-P., and Dufour, C. 1992. Les Fantomes de l'Ambre. Musée d'Histoire Naturelle de Neuchâtel, Neuchâtel, Switzerland.Google Scholar
Kuschel, G. 1966. A cossonine genus with bark-beetle habits with remarks on relationships and biogeography (Coleoptera, Curculionidae). New Zealand Journal of Science, 9:329.Google Scholar
Kuschel, G., and Poinar, G. O. Jr. 1993. Libanorhinus succinus gen. and sp. n. (Coleoptera: Nemonychidae) from Lebanese amber. Entomological Scandinavica, 24:143146.Google Scholar
Kutscher, M., and Koteja, J. 2000. Coccids and aphids (Hemiptera: Coccinea, Aphidinea) prey of ants (Hymenoptera: Formicidae): evidence from Bitterfeld amber. Polskie Pismo Entomologiczne, 69:179185.Google Scholar
Labandeira, C. C. 1999. Insects and other hexapods, p. 603624. In Singer, R. (ed.), Encyclopedia of Paleontology. Fitzroy Dearborn, Chicago.Google Scholar
Labandeira, C. C. 2002. The history of associations between plants and animals, p. 2674 (appendix 248–261). In Herrera, C. and Pellmyr, O. (eds.), Plant-Animal Interactions: An Evolutionary Approach. Blackwell Science, Oxford, U.K. Google Scholar
Labandeira, C. C. 2006. The four phases of plant-arthropod associations in deep time. Geologica Acta, 4:409438.Google Scholar
Labandeira, C. C. 2010. The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. Annals of the Missouri Garden, 97:469513.Google Scholar
Labandeira, C. C. 2012. Evidence for outbreaks from the fossil record of insect herbivory, p. 269290. In Barbosa, P., Letourneau, D. K., and Agrawal, A. A. (eds.), Insect Outbreaks Revisited. Wiley-Blackwell, Chichester, U.K. Google Scholar
Labandeira, C. C. 2013. Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften, 100:355363.Google Scholar
Labandeira, C. C. 2014. Why did terrestrial insect diversity not increase during the angiosperm radiation? Plant-associated insect lineages harbor some clues, p. 261299. In Pontarotti, P. (ed.), Evolutionary Biology: Genome, Evolution, Speciation, Coevolution and Origin of Life. Springer, Berlin. doi: 10.1007/978-3-319.Google Scholar
Labandeira, C. C., Dilcher, D. L., Davis, D. R., and Wagner, D. L. 1994. Ninety-seven million years of angiosperm–insect association: paleobiological insights into the meaning of coevolution. Proceedings of the National Academy of Sciences of the United States of America, 91:1227812282.Google Scholar
Labandeira, C. C., and Dunne, J. A. 2014. Data sets for “Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction” DRYAD Digital Repository. doi: 10.5061/dryad.ps0f0 Google Scholar
Labandeira, C. C., LePage, B. A., and Johnson, A. H. 2001. A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): Early or delayed colonization? American Journal of Botany, 88:20262039.Google Scholar
Labandeira, C. C., and Phillips, T. L. 2002. Stem borings and petiole galls from Pennsylvanian tree ferns of Illinois, USA: Implications for the origin of the borer and galling functional-feeding-groups and holometabolous insects. Palaeontographica (A), 264:184.Google Scholar
Labandeira, C. C., and Prevec, R. 2014. Plant paleopathology and the roles of pathogens and insects. International Journal of Paleopathology, 4:116.Google Scholar
Labandeira, C. C., and Sepkoski, J. J. Jr. 1993. Insect diversity in the fossil record. Science, 261:310315.Google Scholar
Labandeira, C. C., Wilf, P., Johnson, K. R., and Marsh, F. 2007. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils. Smithsonian Institution, Version 3.0. http://paleobiology.si.edu/pdfs/InsectDamageGuide3.01.pdf Google Scholar
Lak, M., Azar, D., Nel, A., Néraudeau, D., and Tafforeau, P. 2008a. The oldest representative of the Trichomyiinae (Diptera: Psychodidae) from the lower Cenomanian French amber studied with phase-contrast synchrotron X-ray imaging. Invertebrate Systematics, 22:471478.Google Scholar
Lak, M., Fleck, G., Azar, D., Engel, M. S., Kaddumi, H. F., Néraudeau, D., Tafforeau, P., and Nel, A. 2009. Phase contast X-ray synchrotron microtomography and the oldest damselflies in amber (Odonata: Zygoptera: Hemiphlebiidae). Zoological Journal of the Linnean Society, 156:913923.Google Scholar
Lak, M., Néraudeau, D., Nel, A., Cloetens, P., Perrichot, V., and Tafforeau, P. 2008b. Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber studied with phase-contrast synchrotron X-ray imaging. Microscopy and Microanalysis, 14:251259.Google Scholar
Lambert, J. B., Heckenbach, E. A., Hurtley, A. E., Wu, Y., and Santiago-Blay, J. A. 2009. Nuclear magnetic resonance spectroscopic characterization of legume exudates. Journal of Natural Products, 72:10281035.Google Scholar
Lambert, L. H., Santiago-Blay, J. A., and Anderson, K. B. 2008. Chemical signatures of fossilized resins and recent plant exudates. Angewandte Chemie, 47:96089616.Google Scholar
Langenheim, J. H. 1967. Preliminary investigations of Hymenaea coubaril as a resin producer. Journal of the Arnold Arboretum, 48:203230.Google Scholar
Langenheim, J. H. 1984. The roles of plant secondary chemicals in wet tropical ecosystems, p. 189208. In Medina, E., Mooney, H. A., and Vázquez-Yánes, C. (eds.), Physiological Ecology of Plants of the Wet Tropics. Junk, The Hague.Google Scholar
Langenheim, J. H. 1990. Plant resins. American Scientist, 78:1624.Google Scholar
Langenheim, J. H. 1995. Biology of amber-producing trees: focus on case studies of Hymenaea and Agathis , p. 131. In Anderson, K. B. and Crelling, J. C. (eds.), Amber, Resinite, and Fossil Resins. American Chemical Society Symposium Series 617. American Chemical Society, Washington, D. C.Google Scholar
Langenheim, J. H., Convis, C. L., Macedo, C. A., and Stubblebine, W. H. 1986. Hymenaea and Copaifera leaf sesquiterpenes in relation to lepidopteran herbivory in southeastern Brazil. Biochemical Systematics and Ecology, 14:4149.Google Scholar
LaPolla, J. S., Dlussky, G. M., and Perrichot, V. 2013. Ants and the fossil record. Annual Review of Entomology, 58:609630.Google Scholar
Larsson, S. G. 1978. Baltic Amber—A Palaeobiological Study. Entomonograph, 1:1192.Google Scholar
Lewis, R. E., and Grimaldi, D. A. 1997. A pulicid flea in Miocene amber from the Dominican Republic (Insecta: Siphonaptera: Pulicidae). American Museum Novitates, 3205:19.Google Scholar
Linck, O. 1949. Fossile Bohrgänge an einem Keuperholz. Neues Jahrbuch für Geologie und Paläontologie Monatschefte, 1949:180185.Google Scholar
Litwin, R. J., and Ash, S. R. 1991. First early Mesozoic amber in the Western Hemisphere. Geology, 19:173276.Google Scholar
Lopez-Vaamonde, C., Wikström, N., Labandeira, C. C., Goodman, S., Godfray, H. C. J., and Cook, J. M. 2006. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. Journal of Evolutionary Biology, 19:13141326.Google Scholar
Lyons, P., Finkelman, R., Thompson, C., Brown, F., and Hatcher, P. 1982. Properties, origin and nomenclature of rodlets of the inertinite maceral group in coals of the central Appalachian basin, U.S.A. International Journal of Coal Geology, 1:313346.Google Scholar
Martínez-Delclòs, X., Briggs, D. E. G., and Peñalver, E. 2004. Taphonomy of insects in carbonate and amber. Palaeogeography, Palaeoclimatology, Palaeoecology, 203:1964.Google Scholar
Martínez-Delclòs, X., and Martinell, J. 1995. The oldest known record of social insects. Journal of Paleontology, 69:594599.CrossRefGoogle Scholar
Martín-González, A., Wierzchos, J., Gutiérrez, J.-C., Alonso, J., and Acaso, C. 2009. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber. BMC Biology, 7:9. doi: 10.1186/1741.7007-7-9 Google Scholar
Martín-González, A., Wierzchos, J., Gutierrez, J. C., Alonso, J., and Acasio, C. 2008. Morphological stasis of protists in Lower Cretaceous amber. Protist, 159:251257.Google Scholar
Mauseth, J. D. 1988. Plant Anatomy. Benjamin Cummings Co., Menlo Park, California.Google Scholar
McAlpine, J. F., and Martin, J. E. H. 1969. Canadian amber—a paleontological treasure-chest. Canadian Entomologist, 101:819838.Google Scholar
McKellar, R. C., and Wolfe, A. P. 2010. Canadian amber, p. 149165. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
McKenna, D. D., Sequeira, A. S., Marvaldi, A. E., and Farrell, B. D. 2009. Temporal lags and overlap in the diversification of weevils and flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 106:70837088.Google Scholar
McNamara, M. E. 2013. The taphonomy of colour in fossil insects and feathers. Palaeontology, 56:557575.Google Scholar
Molino-Olmedo, F. 1999. Importancia del ámbar en el registro fósil de coleópteros saproxilicos. Estudios Museo Ciencias Naturales de Álava, 14 (special number 2):211215.Google Scholar
Nardi, J. B. 2007. Life in the Soil. University of Chicago Press, Chicago, Illinois.Google Scholar
Nascimbene, P., and Silverstein, H. 2000. The preparation of fragile Cretaceous ambers for conservation and study of organismal inclusions, p. 93102. In Grimaldi, D. A. (ed.), Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden, Netherlands.Google Scholar
Naugolnykh, S. V., and Ponomarenko, A. G. 2010. Possible traces of feeding traces by beetles in coniferophyte wood from the Kazanian of the Kama River Basin. Paleontological Journal, 44:468474.Google Scholar
Nel, A., and Brasero, N. 2010. Oise amber, p. 137148. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Nel, P., Peñalver, E., and Nel, A. 2007. A new ‘primitive’ family of thrips from Early Cretaceous Lebanese amber (Insecta, Thysanoptera). Cretaceous Research, 28:10331038.Google Scholar
Néraudeau, D., Perrichot, V., Dejas, J., Masure, E., Nel, A., Philippe, M., Moreau, P., Guillocheau, F., and Guyot, T. 2002. Un noveau gisement à amber insectifère et à végétaux (Albien terminal probable): Archingeay (Charente-Maritime, France). Geobios, 35:233240.Google Scholar
Neubauer, M. 1994. Die Bernsteinverbreitung in glazialen Ablagerungen inbesondere von Nordwestdeutschland Unveröffl. Report of the University of Bremen.Google Scholar
Nissenbaum, A., and Horowitz, A. 1992. The Levantine amber belt. Journal of African Earth Science, 14:295300.Google Scholar
Ortega-Blanco, J., Delclòs, X., Peñalver, E., and Engel, M. S. 2011a. Serphitid wasps in Early Cretaceous amber from Spain (Hymenoptera: Serphitidae). Cretaceous Research, 32:143154.Google Scholar
Ortega-Blanco, J., Delclòs, X., and Engel, M. S. 2011b. Diverse stigmaphronid wasps in Early Cretaceous amber from Spain (Hymenoptera: Ceraphronoidea: Stigmaphronidae). Cretaceous Research, 32:762773.Google Scholar
Paine, T. D., Raffa, K. F., and Harrington, T. C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology, 42:179206.Google Scholar
Palmer, A. R. 1957. Miocene arthropods from the Mojave Desert, California. United States Geological Survey Professional Paper 294-G, United States Printing Office, Washington, D. C. Google Scholar
Park, L. E., and Downing, K. F. 2001. Paleoecology of an exceptionally preserved arthropod fauna from lake deposits of the Miocene Barstow Formation, Southern California, U.S.A. PALAIOS, 16:175184.Google Scholar
Pearce, R. B. 1996. Antimicrobial defences in the wood of living trees. New Phytologist, 132:203233.Google Scholar
Peñalver, E., and Delclòs, X. 2010. Spanish amber, p. 236270. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Peñalver, E., Engel, M. S., and Grimaldi, D. A. 2006. Fig wasps in Dominican amber (Hymenoptera: Agaonidae). American Museum Novitates, 3541:116.Google Scholar
Peñalver, E., and Grimaldi, D. A. 2006a. Assemblages of mammalian hair and blood-feeding midges (Insecta: Diptera: Psychodidae: Phlebotominae) in Miocene amber. Transactions of the Royal Society of Edinburgh-Earth Sciences, 96:177195.Google Scholar
Peñalver, E., and Grimaldi, D. A. 2006b. New data on Miocene amber butterflies in Dominican amber (Lepidoptera: Riodinidae and Nymphalidae) with the description of a new nymphalid. American Museum Novitates, 3519:117.Google Scholar
Peñalver, E., and Grimaldi, D. A. 2010. Latest occurrence of the family Elcanidae (Insecta: Orthoptera) in Cretaceous amber from Myanmar and Spain. Annales de la Société Entomologique de France, 46:8899.Google Scholar
Peñalver, E., Grimaldi, D. A., and Delclòs, X. 2006. Early Cretaceous spider web with its prey. Science, 312:176.Google Scholar
Peñalver, E., Labandeira, C. C., Barrón, E., Delclòs, X., Nel, P., Nel, A., Tafforeau, P., and Soriano, C. 2012. Thrips pollination of Mesozoic gymnosperms. Proceedings of the National Academy of Sciences of the United States of America, 109:86238628.Google Scholar
Peñalver, E., Ortega-Blanco, J., Nel, A., and Delclòs, X. 2010. Mesozoic Evaniidae (Insecta: Hymenoptera) in Spanish amber: reanalysis of the phylogeny of the Evanioidea. Acta Geological Sinica, 84:809827.Google Scholar
Penney, D. 2002. Paleoecology of Dominican amber preservation—spider (Araneae) inclusions demonstrate a bias for active, trunk-dwelling faunas. Paleobiology, 28:389398.Google Scholar
Penney, D. 2005a. Fossil blood droplets in Miocene Dominican amber yield clues to speed and direction of resin secretion. Palaeontology, 48:935–928.Google Scholar
Penney, D. 2005b. Importance of Dominican Republic amber for determining taxonomic bias of fossil resin preservation—A case study of spiders. Palaeogeography, Palaeoclimatology, Palaeoecology, 223:18.Google Scholar
Penney, D. (ed). 2010a. Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Penney, D. 2010b. Dominican amber, p. 2241. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Penney, D., Dierick, M., Cnudde, V., Masschaele, B., Vlassenbroeck, J., Van Hoorebeke, L., and Jacobs, P. 2007. First fossil Micropholcommatidae (Araneae), imaged in Eocene Paris amber using X-ray computed tomography. Zootaxa, 1623:4753.Google Scholar
Penney, D., and Green, D. I. 2010. Introduction, preparation, study and conservation of amber inclusions, p. 521. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Penney, D., and Langan, A. M. 2006. Comparing amber fossils across the Cenozoic. Biology Letters, 2:266270.Google Scholar
Penney, D., McNeil, A., Green, D. I., Bradley, R. S., Jepson, J. E., Withers, P. J., and Preziosi, R. F. 2012a. Ancient Ephemeroptera–Collembola symbiosis fossilized in amber predicts contemporary phoretic associations. PLoS ONE, 7(10), e47651. doi: 10.1371/journal.pone.0047651 Google Scholar
Penney, D., McNeil, A., Green, D. I., Bradley, R., Withers, P. J., and Preziosi, R. F. 2012b. The oldest fossil pirate spider (Araneae: Mimetidae), in uppermost Eocene Indian amber, imaged using X-ray computed tomography. Arachnology, 15:299302.Google Scholar
Penney, D. A., and Preziosi, R. F. 2010. On inclusions in subfossil resins (copal), p. 299303. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Penney, D., Wadsworth, C., Fox, G., Kennedy, S. L., Preziosi, R. F., and Brown, T. A. 2013a. Absence of ancient DNA in sub-fossil insect inclusions preserved in ‘Anthropocene’ Colombian copal. PLoS ONE, 8(9): e73150. doi: 10.1371/journal.pone.0073150 Google Scholar
Penney, D., Wadsworth, C., Green, D. I., Kennedy, S. L., Preziosi, R. F., and Brown, T. A. 2013b. Extraction of inclusions from (sub)fossil resins, with description of a new species of stingless bee (Hymenoptera: Apidae: Meliponini) in Quaternary Colombian copal. Paleontological Contributions of the University of Kansas Paleontological Institute, 7:16.Google Scholar
Pérez-de-la-Fuente, R., Declòs, X., Peńalver, E., Speranza, M., Wierchos, J., Acaso, C., and Engel, M. S. 2012. Early evolution and ecology of camouflage in insects. Proceedings of the National Academy of Sciences of the United States of America, 190:2141421419.Google Scholar
Peris, D., Philips, T., and Delclòs, X. 2014. Ptinid beetles from the Cretaceous gymnosperm-dominated forests. Cretaceous Research, 54. doi.ort/10.1016/j.cretres.2014.02.009 Google Scholar
Perkovsky, E. E., Zosimovich, V. Y., and Vlaskin, A. P. 2010. Rovno amber, p. 116137. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Perreau, M., and Tafforeau, P. 2011. Virtual dissection using phase-contrast X-ray synchrotron microtomography: reducing the gap between fossils and extant species. Systematic Entomology, 36:573580.Google Scholar
Perrichot, V. 2004. Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna. Geologica Acta, 2:922.Google Scholar
Perrichot, V. 2005. Environnements paraliques à amber et à végétaux du Crétacé Nord-Aquitain (Charentes, Sud-Ouest de la France). Mémoires Géosciences Rennes, 118:1213.Google Scholar
Perrichot, V., Néraudeau, D., and Tafforeau, P. 2010. Charentese Amber, p. 192207. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Philippe, M., Cuny, G., Suteehorn, V., Teerarungsigul, N., Barale, G., Thévenard, F., Le Loeuff, J., Buffetaut, E., Gaona, T., Košir, A., and Tong, H. 2005. A Jurassic amber deposit in Southern Thailand. Historical Biology, 17:16.Google Scholar
Pike, E. M. 1993. Amber taphonomy and collecting biases. PALAIOS, 8:411419.Google Scholar
Pike, E. M. 1994. Historical changes in insect community structure as indicated by hexapods of Upper Cretaceous Alberta (Grassy Lake) amber. Canadian Entomologist, 126:695702.Google Scholar
Pohl, H., Wipfler, B., Grimaldi, D., Beckmann, F., and Beutel, R. G. 2010. Reconstructing the anatomy of the 42 million-year-old fossil † Mengea tertiara (Insecta, Strepsiptera). Naturwissenschaften, 97:855859.Google Scholar
Poinar, G. O. Jr. 1992a. Life in Amber. Stanford University Press, Redwood City, California.Google Scholar
Poinar, G. O. Jr. 1992b. Fossil evidence of resin utilization by insects. Biotropica, 24:466468.Google Scholar
Poinar, G. O. Jr. 1994. The range of life in amber: significance and implications in DNA studies. Experientia, 50:536542.Google Scholar
Poinar, G. O. Jr. 1998. Fossils explained 22: palaeontology of amber. Geology Today, 14:154160.Google Scholar
Poinar, G. O. Jr. 1999a. A fossil palm bruchid, Coryobruchus domincanus, sp. n. (Pachymerini: Bruchidae) in Dominican amber. Entomologica Scandinavica, 30:219224.Google Scholar
Poinar, G. O. Jr. 1999b. Paleochordodes protus n. g., n. sp. (Nematomorpha: Chorodidae), parasites of a fossil cockroach, with a critical examination of other fossil hairworms and helminthes of extant cockroaches (Insecta: Blattaria). Invertebrate Biology, 188:109115.Google Scholar
Poinar, G. O. Jr. 2001. Dominican amber, p. 362364. In Briggs, D. E. G. and Crowther, P. (eds.), Paleobiology II. Blackwell Scientific, Oxford, U.K. Google Scholar
Poinar, G. O. Jr. 2003. Coelomycetes in Dominican and Mexican amber. Mycological Research, 197:117122.Google Scholar
Poinar, G. O. Jr. 2004. Palaeomyia burmitis (Diptera: Phlebotomidae), a new genus and species of Cretaceous sand flies with evidence of blood-sucking habits. Proceedings of the Entomological Society of Washington, 106:598605.Google Scholar
Poinar, G. O. Jr. 2005a. A Cretaceous palm bruchid, Mesopachymerus antiqua, n. gen., n. sp. (Coleoptera: Bruchidae: Pachymerini) and biogeographical implications. Proceedings of the Entomological Society of Washington, 107:392397.Google Scholar
Poinar, G. O. Jr. 2005b. Culex malariager, n. sp. (Diptera: Culicidae) from Dominican amber: the first fossil mosquito vector of Plasmodium. Proceedings of the Entomological Society of Washington, 107:548553.Google Scholar
Poinar, G. O. Jr. 2005c. Triatoma dominicana sp. n. (Hemiptera: Reduviidae: Triatominae) and Trypanosoma antiquus sp. n. (Stercoraria: Trypanosomatidae), the first fossil evidence of a triatomine-trypanosomatid vector association. Vector-Borne and Zoonotic Diseases, 5:7281.Google Scholar
Poinar, G. O. Jr. 2008a. Leptoconops nosopheris sp. n. (Diptera: Ceratopogonidae) and Paleotrypanosoma burmanicus gen. n., sp. n. (Kinetoplastida: Trypanosomatidae), a biting midge-trypanosome vector association from the Early Cretaceous. Memorias do Instituto Oswaldo Cruz, 103:468471.Google Scholar
Poinar, G. O. Jr. 2008b. Lutzomyia adiketis sp. n. (Diptera: Phlebotomidae), a vector of Paleoleishmania neotropicum sp. n. (Kinetoplastida: Trypanosomatidae) in Dominican amber. Parasites & Vectors, 1:22. doi: 10.1186/1756-3305-1-22 Google Scholar
Poinar, G. O. Jr. 2010a. Palaeoecological perspectives in Dominican amber. Annals de la Société Entomologique du France, 46:2352.Google Scholar
Poinar, G. O. Jr. 2010b. Cases of camouflage in amber, p. 188191. In Boucot, A. J. and Poinar, G. O. Jr. (eds.), Fossil Behavior Compendium. CRC Press, Boca Raton, Florida.Google Scholar
Poinar, G. O. Jr. 2011a. The Evolutionary History of Nematodes. Brill, Leiden, Netherlands.Google Scholar
Poinar, G. O. Jr. 2011b. Vetufebrus ovatus n. gen., n. sp. (Haemosporoida: Plasmodiidae) vectored by a streblid bat fly (Diptera: Streblidae) in Dominican amber. Parasites & Vectors, 4:229. http://www.parasitesandvectors.com/content/4/229 Google Scholar
Poinar, G. O. Jr. 2012. Fossil gregarines in Dominican and Burmese amber: examples of accelerated development? Palaeodiversity, 5:16.Google Scholar
Poinar, G. O. Jr. 2014. Evolutionary history of terrestrial pathogens and endoparasites as revealed in fossils and subfossils. Advances in Biology, article 18135. http://dx.doi.ort/10.1155/2014/181353 Google Scholar
Poinar, G. O. Jr., and Brown, A. E. 2003. A non-gilled hymenomycete in Cretaceous amber. Mycological Research, 107:763768.Google Scholar
Poinar, G. O. Jr., and Brown, A. E. 2012. The first fossil streblid bat fly, Enischonomyia stegosoma n. g., n. sp. (Diptera: Hippoboscoidea: Streblidae). Systematic Parasitology, 81:7986.Google Scholar
Poinar, G. O. Jr., and Buckley, R. 2006. Nematode (Nematoda: Mermithidae and hairworm (Nematomorpha: Chorodidae) parasites in Early Cretaceous amber. Journal of Invertebrate Pathology, 93:3641.Google Scholar
Poinar, G. O. Jr., and Buckley, R. 2007. Evidence of mycoparasitism and hypermycoparasitism in Early Cretaceous amber. Mycological Research, 111:503506.Google Scholar
Poinar, G. O. Jr., and Danforth, B. N. 2006. A fossil bee from Early Cretaceous Burmese amber. Science, 314:614.Google Scholar
Poinar, G. O. Jr., Hess, R., and Caltagirone, L. E. 1976. Virus-like particles in the calyx of Phaneratoma flavitestacea (Hymenoptera: Braconidae) and their transfer into host tissues. Acta Zoologica, 57:161165.Google Scholar
Poinar, G. O. Jr., Lachaud, J.-P., Castillo, A., and Infante, F. 2006. Recent and fossil nematode parasites (Nematoda: Mermithidae) of Neotropical ants. Journal of Invertebrate Pathology, 91:1926.Google Scholar
Poinar, G. O. Jr., and Poinar, R. 1999. The Amber Forest: A Reconstruction of a Vanished World. Princeton University Press, Princeton, New Jersey.Google Scholar
Poinar, G. O. Jr., and Poinar, R. 2004a. Paleoleishmania proterus n. gen., n. sp. (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber. Protist, 155:305310.Google Scholar
Poinar, G. O. Jr., and Poinar, R. 2004b. Evidence of vector-borne disease of Early Cretaceous reptiles. Vector-Borne and Zoonotic Diseases, 4:281284.Google Scholar
Poinar, G. O. Jr., and Poinar, R. 2005. Fossil evidence of insect pathogens. Journal of Invertebrate Pathology, 89:243250.Google Scholar
Poinar, G. O. Jr., and Santiago-Blay, J. A. 1997. Paleodoris lattini gen. n. sp. n., a fossil palm bug (Hemiptera: Thaumastocoridae, Xylastodorinae) in Dominican amber, with habits discernible by comparative functional morphology. Entomologica Scandinavica, 28:307310.Google Scholar
Poinar, G. O. Jr., and Singer, R. 1990. Upper Eocene gilled mushroom from the Dominican Republic. Science, 248:10991101.Google Scholar
Poinar, G. O. Jr., and Telford, S. R. Jr. 2005. Paleohaemoproteus burmacis gen. no., sp. n. (Haemosporida: Plasmodiidae) from an Early Cretaceous biting midge (Diptera: Ceratopogonidae). Parasitology, 131:7984.Google Scholar
Poinar, G. O. Jr., Waggoner, B. M., and Bauer, U.-C. 1993a. Terrestrial and soft-bodied protists and other microorganisms in Triassic amber. Science, 259:222224.Google Scholar
Poinar, G. O. Jr., Waggoner, B. M., and Bauer, U.-C. 1993b. Description and paleoecology of a Triassic amoeba. Naturwissenschaften, 80:566568.Google Scholar
Poinar, T. Jr., Cano, R. J., and Poinar, G. O. Jr. 1993c. DNA from an extinct plant. Nature, 363:677.Google Scholar
Polcyn, M. J., Rogers, J. V, Kobayashi, Y., and Jacobs, L. L. 2002. Computed tomography of an Anolis lizard in Dominican amber: systematic, taphonomic, biogeographic and evolutionary implications. Palaeontologia Electronica, 5(1), http://palaeo-electronica.org/2002_1/amber/issuel_02.htm Google Scholar
Ragazzi, E., and Schmidt, A. R. 2011. Amber, p. 2436. In Reitner, J., and Thiel, V., (eds.) Encyclopedia of Geobiology. Springer, Dordrecht, The Netherlands.Google Scholar
Ramirez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R., and Pierce, N. E. 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature, 448:10421045.Google Scholar
Rasnitsyn, A. P. 1980. Origin and evolution of the Hymenoptera. Transactions of the Paleontological Institute, 174:1192 [in Russian; English translation, 1984, Biosystematics Research Centre, Ottawa, Canada].Google Scholar
Rasnitsyn, A. P., and Quicke, D. L. J. (eds.). 2002. History of Insects. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
Ren, D., Labandeira, C. C., Santiago-Blay, J. A., Rasnitsyn, A., Shih, C., Bashkuev, A., Logan, M. A. V, Hotton, C. L., and Dilcher, D. 2009. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science, 326:840847.Google Scholar
Richardson, D. P., Messer, A. C. S., Greenberg, H. H., Hagedorn, P., and Meinwold, P. 1989. Defensive sesquiterpenoids from a dipterocarp (Dipterocarpus kerri). Journal of Chemical Ecology, 15:731747.Google Scholar
Rikkinen, J., and Poinar, G. Jr. 2000. A new species of resinicolous Chaenothecopsis (Mycocaliciaceae, Ascomycota) from 20 million year old Bitterfeld amber, with remarks on the biology of resinicolous amber. Mycological Research, 104:715.Google Scholar
Ritzkowski, S. 1999. K-Ar-Altersbestimmungen der bernsteinfuehrenden Sedimente des Samlandes (Palaeogen), Bezirk Kaliningrad. Metalla, 66:1923.Google Scholar
Rogers, S. O., Langenegger, K., and Holdenrieder, O. 2000. DNA changes in tissues entrapped in plant resins (the precursors of amber). Naturwissenschaften, 87:7075.Google Scholar
Roghi, G., Ragazzi, E., and Gianolla, P. 2006. Triassic amber of the Southern Alps (Italy). PALAIOS, 21:143154.Google Scholar
Ross, A., Mellish, C., York, P., and Crighton, B. 2010. Burmese Amber, p. 208235. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Rowley, D. A. 1996. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth and Planetary Science Letters, 145:113.Google Scholar
Rust, J., Singh, H., Rana, R. S., McCann, T., Singh, L., Anderson, K., Sarkar, N., Nascimbene, P. C., Stebner, F., Thomas, J. C., Solórzano Kraemer, M., Williams, J. C., Engel, M. S., Sahni, A., and Grimaldi, D. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences of the United States of America, 107:1836018365.Google Scholar
Santiago-Blay, J. A., Anderson, S. R., and Buckley, R. T. 2005. Possible implications of two new angiosperm flowers from Burmese amber (Lower Cretaceous) for well-established and diversified insect-plant associations. Entomologica News, 116:341346.Google Scholar
Santiago-Blay, J. A., Lambert, J. B., and Creasman, P. P. 2011. Expanded application of dendrochronology collections: collect and save exudates. Tree-Ring Research, 67:6768.Google Scholar
Santiago-Blay, J. A., and Poinar, G. O. Jr. 1993. First scorpion (Buthidae: Centuroides) from Mexican amber (Lower Miocene to Upper Oligocene). Journal of Arachnology, 21:147151.Google Scholar
Saunders, W. B., Mapes, R. H., Carpenter, F. M., and Elsik, W. C. 1974. Fossiliferous amber from the Eocene (Claiborne) of the Gulf Coastal Plain. Geological Society of America Bulletin, 85:979984.Google Scholar
Schachat, S. C. Labandeira, C., Gordon, J., Chaney, D. S., Levi, S., Halthore, M., and Alvarez, J. 2012. Extensive and varied herbivory for the Lower Permian Colwell Creek Pond site of north-central Texas, USA. Geological Society of America Abstracts with Programs, 44(7):289290.Google Scholar
Schedl, K. E. 1947. Die Borkenkäfer des baltischen Bernsteins. Zentralblatt für Gesamtgebiet der Entomologie, 2:1245.Google Scholar
Schlee, D., and Dietrich, H. G. 1970. Insectenfuhrender Bernstein aus der Unterkreide des Libanon. Neues Jahrbuch für Geologie und Paläontologie Monatschefte, 1970:4050.Google Scholar
Schlee, D., and Glöckner, W. 1978. Bernstein—Bernsteine und Bernsteinfossilien. Stuttgarter Beiträge zur Naturkunde, Serie C, 8:172.Google Scholar
Schlüter, T. 1989. Neue Daten über harzenconservierte Arthropoden aus dem Cenomanium NW-Frankreichs. Documenta Naturae, 56:5970.Google Scholar
Schlüter, T., and von Gnielinski, F. 1980. The East African copal: Its geology, stratigraphy, palaeontological significance and comparison with other fossil resins of similar age. Occasional Papers of the National Museum of Tanzania, 8:132.Google Scholar
Schlüter, T., and Kühne, W. G. 1975. Die einseitige Trübung von Harzinklusen—ein Indiz gleicher Bildungsumstände. Entomologia Germanica, 2:308315.Google Scholar
Schlüter, T., and Stürmer, W. 1982. X-ray examination of fossil insects in Cretaceous amber of N.W. France. Annales de la Société Entomologique de France, 18:527529.Google Scholar
Schmidt, A. R., Dörfelt, H., and Perrichot, V. 2008. Palaeoanellus dimorphus gen. et sp. nov. (Deuteromycotina): a Cretaceous predatory fungus. American Journal of Botany, 95:13281334.CrossRefGoogle ScholarPubMed
Schmidt, A. R., Jancke, S., Lindquist, E. E., Ragazzi, E., Roghi, G., Nascimbene, P. C., Schmidt, K., Wappler, T., and Grimaldi, D. A. 2012. Arthropods in amber from the Triassic Period. Proceedings of the National Academy of Sciences of the United States of America, 109:1479614801.Google Scholar
Schmidt, A. R., Perrichot, V., Svojtka, M., Anderson, K. B., Belete, K. H., Bussert, R., Dörfelt, H., Jancke, S., Mohr, B., Mohrmann, E., Nascimbene, P. C., Nel, A., Nel, P., Ragazzi, E., Roghi, G., Saupe, E. E., Schmidt, K., Schneider, H., Selden, P. A., and Vávra, N. 2010. Cretaceous African life captured in amber. Proceedings of the National Academy of Sciences of the United States of America, 107:73297334.Google Scholar
Schmidt, A. R., Ragazzi, E., Coppellotti, O., and Roghi, G. 2006. A microworld in Triassic amber. Nature, 444:835.Google Scholar
Schmidt, A. R., Schönborn, W., and Schäfer, U. 2004. Diverse fossil amoebae in German Mesozoic amber. Palaeontology, 47:185197.Google Scholar
Schmidt, A. R., von Eynatten, H., and Wagreich, M. 2001. The Mesozoic amber of Schliersee (southern Germany) is Cretaceous in age. Cretaceous Research, 22:423428.Google Scholar
Schönborn, W., Dörfelt, H., Foissner, W., Krienitz, L., and Schäfer, U. 1999. A fossilized microcoenosis in Triassic amber. Journal of Eukaryotic Microbiology, 46:571584.Google Scholar
Schweitzer, M. H. 2011. Soft tissue preservation in terrestrial Mesozoic vertebrates. Annual Review of Earth and Planetary Sciences, 39:187216.Google Scholar
Sequeira, A. S., and Farrell, B. D. 2001. Evolutionary origins of Gondwanan interactions: How old are Araucaria beetle herbivores? Biological Journal of the Linnaean Society, 74:459474.Google Scholar
Shi, G., Grimaldi, D. A., Harlow, G. E., Wang, J., Wang, J., Yang, M., Lei, W., Li, Q., and Li, X. 2013. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37:155163.Google Scholar
Smith, A. B., and Austin, J. J. 1997. Can geologically ancient DNA be recovered from the fossil record? Geoscientist, 7:5861.Google Scholar
Smith, S. Y., Collinson, M. E., Rudall, P. J., Simpson, D. A., Marone, F., and Stampanoni, M. 2009. Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proceedings of the National Academy of Sciences of the United States of America, 106:1201312018.Google Scholar
Sodhi, R. N. S., Mims, C. A., Goacher, R. E., McKague, B., and Wolfe, A. P. 2013. Preliminary characterization of Palaeogene European ambers using ToF-SIMS. Surface and Interface Analysis, 45:557560.Google Scholar
Sodhi, R. N. S., Mims, C. A., Goacher, R. E., McKague, B., and Wolfe, A. P. 2014. Differentiating diterpene resin acids using ToF-SIMS and principal compound analysis new tools for assessing the geochemistry of amber. Surface and Interface Analysis, 46(4). doi: 10.1002/sia.5416 Google Scholar
Solomon, J. D. 1995. Guide to insect borers in North American broadleaf trees and shrubs. U. S. Forest Service Agriculture Handbook AH-706, United States Department of Agriculture, Washington, D.C. Google Scholar
Solórzano Kraemer, M. M. 2010. Mexican amber, p. 4256. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Soriano, C., Archer, M., Azar, D., Creaser, P., Delclòs, X., Godthelp, H., Hand, S., Jones, A., Nel, A., Néraudeau, D., Ortega-Blanco, J., Pérez-de-la-Fuente, J., Perrichot, V., Saupe, E., Solórzano-Kraemer, M. Y., and Tafforeau, P. 2010. Synchrotron X-ray imaging of inclusions in amber. Comptes Rendus Paleovol, 9:361368.Google Scholar
Speranza, M., Wierzchos, J., Alonso, J., Bettucci, L., Martín-González, A., and Acaso, C. 2010. Traditional and new microscopy techniques applied to the study of microscopic fungi included in amber, p. 11351145. In Méndez-Vilas, A. and Díaz, J. (eds.), Microscopy: Science, Technology, Applications and Education. Formatex Research Center, Badajoz, Spain.Google Scholar
Standke, G. 1998. Die Tertiärprofile der Samländischen Bernsteinküste bei Rauschen. Schriftenreihe für Geowissenschaften, 7:93133.Google Scholar
Standke, G. 2008. Bitterfelder Bernstein gleich Baltischer Bernstein? Eine geologische Raum-Zeit-Betrachtung und genetische Schlußfolgerungen, p. 1133. In Rascher, J., Wimmer, R., Krumbiegel, G., Schmiedel, S. (eds), Bitterfelder Bernstein versus Baltischer Bernstein —Hypothesen, Fakten, Fragen. Exkursionsführer und Veröffentlichungen der Deutschen Gesellschaft für Geowissenschaften 236.Google Scholar
Stankiewicz, B. A., Poinar, H. N., Briggs, D. E. G., Evershed, R. P., and Poinar, G. O. Jr. 1998. Chemical preservation of plants and insects in natural resins. Proceedings of the Royal Society of London B-Biological Sciences, 265:641647.Google Scholar
Stout, E. C., Beck, C. W., and Anderson, K. B. 2000. Identification of rumanite (Romanian amber) as thermally altered succinite (Baltic amber). Physics and Chemistry of Minerals, 27:665678.Google Scholar
Sturgeon, K. B. 1979. Monoterpene variation in ponderosa pine xylem resin related to western pine beetle predation. Evolution, 33:803814.Google Scholar
Sung, G.-H., Poinar, G. O. Jr., and Spatafora, J. W. 2008. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Molecular Phylogenetics and Evolution, 49:495502.Google Scholar
Sutton, M. P. 2008. Tomographic techniques for the study of exceptionally preserved fossils. Proceedings of the Royal Society of London B-Biological Sciences, 275:15871593.Google Scholar
Szwedo, J. 2002. Amber and amber inclusions of planthoppers, leafhoppers and their relatives (Hemiptera, Archaeorrhyncha et Clypaeorrhyncha), p. 3756. In Holzinger, W. E. (ed.), Zikaden—Leafhoppers, Planthoppers and Cicadas (Insecta: Hemiptera: Auchenorrhyncha). Biologiezentrum Oberösterreichisches Landesmuseum, Linz.Google Scholar
Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Haeger, J. J., Kay, R. F., Lazzari, V., Mrivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P., and Zabler, S. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A (Materials Science & Processing), 83:195202.Google Scholar
Tapanila, L., and Roberts, E. M. 2012. The earliest evidence of holometabolan insect pupation in conifer wood. PLoS ONE, 7(2):e31668.Google Scholar
Thomas, D. B., Nascimbene, P. C., Dove, C. J., Grimaldi, D. A., and James, H. F. 2014. Seeking carotenoid pigments in amber-preserved fossil feathers. Scientific Reports, 4(5226): 16 doi: 10.1038/srep05226 Google Scholar
Tomlin, E. S., Antonejevic, E., Alfaro, R. I., and Borden, J. H. 2000. Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiology, 20:10871095.Google Scholar
Tuovila, H., Schmidt, A. R., Beimforde, C., Dörfelt, H., Grabenhorst, H., and Rikkinen, J. 2013. Stuck in time—a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber. Fungal Diversity, 58:199213.Google Scholar
Usinger, R. L. 1958. Harzwanzen or “resin bugs” in Thailand. Pan-Pacific Entomologist, 34:52.Google Scholar
van Bergen, P. F., Collinson, M. E., Scott, A. C., and de Leeuw, J. W. 1995. Unusual resin chemistry from Upper Carboniferous pteridosperm resin rodlets, p. 149169. In Anderson, K. B. and Crelling, J. C. (eds.), Amber, Resinite, and Fossil Resins. American Chemical Society Symposium Series 617. American Chemical Society, Washington, D. C.Google Scholar
Vávra, N. 2009. Amber, fossil resins and copal—contributions to the terminology of fossil plant resins. Denisia, 26:213222.Google Scholar
Voigt, E. 1988. Preservation of soft tissues in the Eocene lignite of Geiseltal near Halle (Saale). Courier Forschungs Institut Senckenberg, 107:325343.Google Scholar
Vilhelmsen, L., and Turrisi, G. F. 2011. Per arborem ad astra: Morphological adaptations to exploiting the woody habitat in the early evolution of Hymenoptera. Arthropod Structure & Development, 40:220.Google Scholar
Walden, K. K. O., and Robertson, H. M. 1997. Ancient DNA from amber fossil bees? Molecular Biology and Evolution, 14:10751077.Google Scholar
Walker, M. V. 1938. Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proceedings of the United States National Museum, 85:137141.Google Scholar
Wang, B., Zhang, H., and Azar, D. 2011. The first Psychodidae (Insecta: Diptera) from the lower Eocene Fushun amber of China. Journal of Paleontology, 85:11541159.Google Scholar
Wang, Q., Ferguson, D. K., Feng, G.-P, Ablaev, A. G., Wang, Y.-F., Yang, J., Li, Y.-L., and Li, C. S. 2010. Climatic change during the Palaeocene to Eocene based on fossil plants from Fushun, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 295:323331.Google Scholar
Weaver, L., McLoughlin, S., Drinnan, A. N. 1997. Fossil woods from the Upper Permian Bainmedart Coal Measures, northern Prince Charles Mountains, East Antarctica. Journal of Australian Geology & Geophysics, 16:655676.Google Scholar
Weitschat, W., and Wichard, W. 2002. Atlas of Plants and Animals in Baltic Amber. Fredrich Pfeil, Munich.Google Scholar
Weitschat, W., and Wichard, W. 2010. Baltic amber, p. 80115. In Penney, D. (ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, U.K. Google Scholar
Whitmore, T. C. 1977. A first look at Agathis . Tropical Forest Papers, 11:166.Google Scholar
Whitmore, T. C. 1980. Utilization, potential and conservation of Agathis, a genus of tropical Asian conifers. Economic Botany, 34:112.Google Scholar
Wier, A., Dolan, M., Grimaldi, D., Guerrero, R., Wagensberg, J., and Margulis, L. 2002. Spirochaete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proceedings of the National Academy of Sciences of the United States of America, 99:14101413.Google Scholar
Wilf, P., and Labandeira, C. C. 1999. Response of plant-insect associations to Paleocene–Eocene warming. Science, 284:21532156.Google Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R., and Ellis, B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313:11121115.Google Scholar
Williams, S. R. 1990. Infrared spectroscopic analysis of Central and South American amber exposed to air pollutants, biocides, light and moisture. Public Collections Forum, 6:114.Google Scholar
Wolfe, A. P., Tappert, R., Muehlenbachs, K., Boudreau, M., McKellar, R. C., Basinger, R. J. F., and Garrett, A. 2009. A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society of London B-Biological Sciences, 276:34033412.Google Scholar
Wunderlich, J. 2000. Ant mimicry by spiders and spider-mite interactions preserved in Baltic amber (Arachnida: Acari, Araneae), p. 355358. In Toft, S. and Scharff, N. (eds.), European Arachnology 2000. Proceedings of the Nineteenth European Colloquium of Arachnology, Århus, Denmark, 17–22 July 2000.Google Scholar
Wuttke, M. 1992. Conservation-dissolution-transformation. On the behaviour of biogenic materials during fossilization, p. 263275. In Schaal, S. and Ziegler, W. (eds.), Messel: An Insight Into The History of Life and of The Earth. Oxford University Press, Oxford, U.K. Google Scholar
Yousten, A.A., and Rippere, K. E. 1997. DNA similarity of a putative ancient bacterial isolate obtained from amber. FEMS Microbiology Letters, 152:345347.Google Scholar
Zavortink, T. J., and Poinar, G. O. Jr. 2000. Anopheles (Nyssorhynchus) dominicanus sp. n. (Diptera: Culicidae) from Dominican amber. Annals of the Entomological Society of America, 93:12301235.Google Scholar
Zhang, G., and Hong, Y. 1999. A new family Drepanochaitophoridae (Homoptera: Aphidoidea) from Eocene Fuschun amber of Liaoning Province, China. Insect Science, 6:127134.Google Scholar
Zherikhin, V. V., and Eskov, K. Y. 1999. Mesozoic and Lower Tertiary resins in former USSR. Estudios del Museo de Ciencias Naturales de Álava, 14 (special number 2): 119131.Google Scholar
Zherikhin, V. V., and Sukatcheva, N. D. 1990. The regularities of burial of insects in present-day and fossil resins. Prace Muzeum Ziemi, 41:163.Google Scholar
Zhou, Z., and Zhang, B. 1989. A sideritic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Palaeobotany and Palynology, 59:133143.Google Scholar