Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T22:40:55.185Z Has data issue: false hasContentIssue false

Vectorial structural properties of the far-field of an apertured circular flattened Gaussian beam

Published online by Cambridge University Press:  23 February 2012

G.Q. Zhou*
Affiliation:
School of Sciences, Zhejiang A & F University, Lin’an 311300, Zhejiang Province, P.R. China
*
Get access

Abstract

Based on the method of stationary-phase and the mathematic techniques, analytical expressions for the TE and TM terms of an apertured circular flattened Gaussian beam (CFGB) in the far-field have been derived without any approximation, which allows one to calculate the energy flux distributions of the TE term, the TM term, and the apertured CFGB. The analytical formulae of the power of the TE term, the TM term, and the apertured CFGB are also presented. The vectorial structural properties of the far-field of an apertured CFGB are demonstrated. The influences of the f-parameter, the truncation parameter, and the parameter N on the energy flux distributions of the TE term, the TM term, and the apertured CFGB are examined. Also, the effects of the f-parameter, the truncation parameter, and the parameter N on the ratios of the power of the TE and TM terms to the power of the apertured CFGB are investigated.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagini, V., Borghi, R., Gori, F., Pacileo, A.M., Santarsiero, M., Ambrosini, D., Spagnolo, G.S., J. Opt. Soc. Am. A 13, 1385 (1996)CrossRef
Mao, H., Zhao, D., Jing, F., Liu, H., Wei, X., J. Opt. A: Pure Appl. Opt. 6, 640 (2004)CrossRef
Eyyuboğlu, H.T., Arpali, C., Baykal, Y., Opt. Express 14, 4196 (2006)CrossRef
Baykal, Y., Eyyuboğlu, H.T., Appl. Opt. 46, 5044 (2007)CrossRef
Coutts, D.W., IEEE J. Quantum Electron. 38, 1217 (2002)CrossRef
Wang, F., Cai, Y., Opt. Lett. 33, 1795 (2008)CrossRef
Li, Y., Opt. Lett. 27, 1007 (2002)CrossRef
Li, Y., Opt. Commun. 206, 225 (2002)CrossRef
Chu, X., Liu, Z., Wu, Y., Appl. Phys. B 92, 119 (2008)CrossRef
Hu, L., Cai, Y., Phys. Lett. A 360, 394 (2006)CrossRef
Zhou, G., Chu, X., Appl. Phys. B 102, 215 (2011)CrossRef
Martínez-Herrero, R., Mejías, P.M., Bosch, S., Carnicer, A., J. Opt. Soc. Am. A 18, 1678 (2001)CrossRef
Zhou, G., Opt. Lett. 31, 2616 (2006)CrossRef
Deng, D., Guo, Q., Opt. Lett. 32, 2711 (2007)CrossRef
Tang, H., Li, X., Zhou, G., Zhu, K., Opt. Commun. 282, 478 (2009)CrossRef
Li, J., Chen, Y., Xin, Y., Zhou, M., Xu, S., Eur. Phys. J. Appl. Phys. 50, 30702 (2010)CrossRef
Carter, W.H., J. Opt. Soc. Am. 62, 1195 (1972)CrossRef
Duan, K., , B., Opt. Express 11, 1474 (2003)CrossRef
Born, M., Wolf, E., Principles of Optics, 4th edn. (Pergamon, New York, 1970)Google Scholar
Gradshteyn, I.S., Ryzhik, I.M., Table of Integrals, Series, and Products (Academic Press, New York, 1980)Google Scholar