Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:34:02.839Z Has data issue: false hasContentIssue false

Use of Rutherford Backscattering Spectrometry for studying the passivation of materials of rechargeable batteries: application to petroleum coke in LiCF3SO3/carbonates mixture electrolyte

Published online by Cambridge University Press:  15 January 2000

F. Mercier*
Affiliation:
UMR 8587 "Analyse et Environnement" , CEA/CNRS/Université d'Evry, Centre d'Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
P. Trocellier
Affiliation:
CEA/DSM/DRECAM/Laboratoire Pierre Süe, Centre d'Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
J. P. Duraud
Affiliation:
CEA/DSM/DRECAM/Laboratoire Pierre Süe, Centre d'Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
A. Chausse
Affiliation:
UMR 8587 "Analyse et Environnement" , CEA/CNRS/Université d'Evry, Centre d'Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
R. Messina
Affiliation:
UMR 8587 "Analyse et Environnement" , CEA/CNRS/Université d'Evry, Centre d'Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
P. Toulhoat
Affiliation:
UMR 8587 "Analyse et Environnement" , CEA/CNRS/Université d'Evry, Centre d'Études de Saclay, 91191 Gif-sur-Yvette Cedex, France CEA/DCC/DESD/Service d'études d'Entreposage et de Stockage des Déchets, Centre d'Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
Get access

Abstract

The evolution of the passivating layer (during the first reduction/reoxidation cycle, in function of the number of reduction/reoxidation cycles and with the storage of the electrode in the electrolyte) formed at the surface of a lithiated carbon electrode in LiCF3SO3/carbonates mixture electrolyte has been followed by using 1 MeV 4He+ induced Rutherford Backscattering Spectrometry (RBS). Two RBS simulation codes "RUMP" and "PERM" , whose approaches are different, have been applied to the treatment of the RBS data and have allowed to obtain informations about the structure (thickness and atomic elemental composition) of the passivating layer. These two codes provide similar results. The passivating layer has a thickness in the range 20-30 nm. Its structure appears to be complex with the presence of two different sublayers respectively composed of the reduction products of the salt in the inner sublayer (with the main presence of fluorine and sulphur indicating the possible existence of LiF and Li2S) and reduction products of the solvents in the outer sublayer (with a high concentration in oxygen indicating the presence of Li2CO3 and RCO3Li where R is an alkyl radical).

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.P. Gabano, Lithium Batteries, Academic Press, London, 1983.
Fong, R., Von Sacken, U., Dahn, J.R., Electrochem. Soc. 137, 2009 (1990). CrossRef
Arawaka, M., Yamaki, J.I., J. Electroanal. Chem. 219, 273 (1987). CrossRef
Guyomard, D., Tarascon, J.M., J. Electrochem. Soc. 139, 937 (1992). CrossRef
Chusid, O., Ein El, Y.y, D. Aurbach, M. Babai, Y. Carmeli, J. Power Sources 43-44, 47 (1993). CrossRef
Aurbach, D., Ein El, Y.y, O. Chusid, Y. Carmeli, M. Babai, H. Yamin, J. Electrochem. Soc. 141, 603 (1994). CrossRef
Jean, M., Desnoyer, C., Tranchant, A., Messina, R., J. Electrochem. Soc. 142, 2144 (1995). CrossRef
M. Jean, A. Chausse, R. Messina, 8th International Meeting on Lithium Batteries, June 1996, Nagoya, Japan.
Jean, M., Tranchant, A., Messina, R., J. Electrochem. Soc. 143, 391 (1996). CrossRef
W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry, Academic Press, New York, 1977.
Trocellier, P., Toulhoat, N., Mercier, F., Courel, P., Nucl. Instrum. Methods Phys. Res. B 83, 545 (1993). CrossRef
Rajchel, B., Nucl. Instrum. Methods Phys. Res. Sect. B 113, 300 (1996). CrossRef
Kotai, E., Nucl. Instrum. Methods Phys. Res. Sect. B 85, 588 (1994). CrossRef
Doolittle, L.R., Nucl. Instrum. Methods Phys. Res. Sect. B 9, 344 (1985). CrossRef
Serruys, Y., Nucl. Instrum. Methods Phys. Res. Sect. B 61, 221 (1991). CrossRef
Serruys, Y., Nucl. Instrum. Methods Phys. Res. Sect. B 44, 473 (1990). CrossRef
Serruys, Y., Tirira, J., Calmon, P., Nucl. Instrum. Methods Phys. Res. Sect. B 74, 565 (1993). CrossRef
Marin, N., Serruys, Y., Calmon, P., Nucl. Instrum. Methods Phys. Res. Sect. B 108, 179 (1996). CrossRef
Barradas, N.P., Jeynes, C., Webb, R.P., Appl. Phys. Lett. 71, 291 (1997). CrossRef