Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T16:31:55.505Z Has data issue: false hasContentIssue false

Ultimate performance of a superconducting quantum detector

Published online by Cambridge University Press:  27 February 2003

A. Semenov*
Affiliation:
DLR Institute of Space Sensor Technology and Planetary Exploration, Rutherfordstr. 2, 12489 Berlin, Germany
A. Engel
Affiliation:
DLR Institute of Space Sensor Technology and Planetary Exploration, Rutherfordstr. 2, 12489 Berlin, Germany
K. Il'in
Affiliation:
Institute of Thin Films and Interfaces, FZ Jülich GmbH, 52425 Jülich, Germany
G. Gol'tsman
Affiliation:
Physical Department, State Pedagogical University, M.Pirogovskaya 29, 119891 Moscow, Russia
M. Siegel
Affiliation:
Institute of Thin Films and Interfaces, FZ Jülich GmbH, 52425 Jülich, Germany
H.-W. Hübers
Affiliation:
DLR Institute of Space Sensor Technology and Planetary Exploration, Rutherfordstr. 2, 12489 Berlin, Germany
Get access

Abstract

We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Irwin, K.D., Hilton, G.C., Martinis, J.M., Deiker, S., Bergren, N., Nam, S.W., Rudman, D.A., Wollman, D.A., Nucl. Instrum. Methods A 444, 184 (2000) CrossRef
Verhoeve, P., Rando, N., Peacock, A., van Dordrecht, A., Taylor, B.G., Goldie, D.J., Appl. Phys. Lett. 72, 3359 (1998) CrossRef
P. Hettl, G. Angloher, F.V. Feilizsch, J. Hohe, J. Jochum, H. Kraus, R.L. Mossbauer, presented at the EDXRF 98, (Bologna, Italy, 1998)
Chouvaev, D., Kuzmin, L., Tarasov, M., Supercond. Sci. Technol. 12, 985 (1999) CrossRef
Schoelkopf, R.J., Moseley, S.H., Stahle, C.M., Wahlgren, P., Delsing, P., IEEE Trans. Appl. Supercond. 9, 2935 (1999) CrossRef
Karasik, B.S., MacGrath, W.R., Gershenson, M.E., Sergeev, A.V., J. Appl. Phys. 87, 7586 (2000) CrossRef
Verhoeve, P., Rando, N., Peacock, A., van Dordrecht, A., Poelaert, A., Goldie, D.J., IEEE Trans. Appl. Supercond. 7, 3359 (1997) CrossRef
Takeuchi, S., Kim, J., Yamamoto, Y., Hogue, H.H., Appl. Phys. Lett. 74, 1063 (1999) CrossRef
Semenov, A.D., Gol'tsman, G.N., Korneev, A.A., Physica C 351, 349 (2001) CrossRef
Gol'tsman, G.N., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., Voronov, B., Dzardanov, A., Williams, C., Sobolewski, R., Appl. Phys. Lett. 79, 705 (2001) CrossRef
Verevkin, A., Zhang, Z., Sobolewski, R., Lipatov, A., Okunev, O., Chulkova, G., Korneev, A., Smirnov, K., Gol'tsman, G.N., Semenov, A., Appl. Phys. Lett. 80, 4687 (2002) CrossRef
Lipatov, A., Okunev, O., Smirnov, K., Chulkova, G., Korneev, A., Kouminov, P., Gol'tsman, G., Zhang, J., Slysz, W., Verevkin, A., Sobolewski, R., Supercond. Sci. Technol. 15, 1 (2002) CrossRef
Lemberger, T.R., Clark, J., Phys. Rev. B 23, 1100 (1981) CrossRef
Kurakado, M., Nucl. Instrum. Methods 196, 275 (1982) CrossRef
B.L. Alt'shuler, A.G. Aronov, Electron-Electron Interactions in Disordered Systems (North Holland, Amsterdam, 1985)
G. Gol'tsman, A. Semenov, K. Smirnov, B. Voronov, presented at the 12th International Symposium on Space Terahertz Technology, (San Diego, 2001)
S.P. Poole, H.A. Farach, R.J. Creswick, Superconductivity (Academic Press, New York, 1995)
Semenov, A.D., Hübers, H.-W., Schubert, J., Gol'tsman, G.N., Elantiev, A.I., Voronov, B.M., Gershenzon, E.M., J. Appl. Phys. 88, 6758 (2000) CrossRef
J. Wolf, R. Katterlocher, D. Lemke, U. Grözinger, L. Hermans, O. Frenzl, D. Engemann, J. Beeman, M. Fabbricotti, Proceeding of the 30th ESLAB Symposium on Submillimeter and Far-Infrared Space Instrumentation, (Norordwijk, The Netherlands, 1996), pp. 25-28
G.B. Heim, M.L. Henderson, K. MacFeely, T.J. McMahon, D. Michika, R.J. Pearson, G.H. Rieke, J.P. Schwenker, D.W. Strecker, C. Thompson, R.M. Warden, D.A. Wilson, E.T. Young, MIPS Report (1996) (http://mips.as.arizona.edu/MIPS/Instrument_f.html)
Nussbaumer, T., Lerch, P., Kirk, E., Zehnder, A., R. , P.F. Meier, H.R. Ott, Phys. Rev. B 61, 9719 (2000) CrossRef
Friedrich, S., Segall, K., Gaidis, M.C., Wilson, C.M., Prober, D.E., Szymkowiak, A.E., Moseley, S.H., Appl. Phys. Lett. 71, 39901 (1997) CrossRef
Irwin, K.D., Appl. Phys. Lett. 66, 1998 (1995) CrossRef
Welty, R.P., Martinis, J.M., IEEE Trans. Appl. Supercond. 27, 2924 (1991)