Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T15:11:56.794Z Has data issue: false hasContentIssue false

Transmission of acoustic waves through 2D phononic crystal: visco-thermal and multiple scattering effects

Published online by Cambridge University Press:  16 January 2009

A. Duclos*
Affiliation:
Laboratoire d'Acoustique de l'Université du Maine, UMR-CNRS 6613, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans Cedex 9, France
D. Lafarge
Affiliation:
Laboratoire d'Acoustique de l'Université du Maine, UMR-CNRS 6613, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans Cedex 9, France
V. Pagneux
Affiliation:
Laboratoire d'Acoustique de l'Université du Maine, UMR-CNRS 6613, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans Cedex 9, France
Get access

Abstract

In this paper, we are interested in the transition between regimes where either visco-thermal or multiple scattering effects dominate for the propagation of acoustic waves through a 2D regular square array of rigid cylinders embedded in air. An extension of the numerical method using Schlömilch series is performed in order to account for visco-thermal losses. Comparison with experimental data and results from classical homogenization theory allows to study the transition between a low frequency limit (where viscous and thermal effects dominate) and a high frequency regime (where multiple scattering effects become predominant). For this particular geometry, a large frequency domain where visco-thermal and multiple scattering effects coexist is found.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Johnson, D.L., Koplik, J., Dashen, R., J. Fluid Mech. 176, 379 (1987) CrossRef
Burridge, R., Keller, J.B., J. Acoust. Soc. Am. 70, 1140 (1985) CrossRef
Sheng, P., Zhou, M.Y., Phys. Rev. Lett. 61, 1591 (1988) CrossRef
J.F. Allard, Propagation of Sound in Porous Materials (Elsevier Science, England, 1993)
Lafarge, D., Lemarinier, P., Allard, J.F., Tarnow, V., J. Acoust. Soc. Am. 102, 1995 (1997) CrossRef
Smeulders, D.M.J., Eggels, R.L.G.M., Dongen, M.E.H.V., J. Fluid Mech. 245, 211 (1992) CrossRef
A. Cortis, Ph.D. thesis, Universita degli Studi di Cagliari geboren te Iglesias, Italy, 2002
Cortis, A., Smeulders, D.M.J., Guermond, J.L., Lafarge, D., Phys. Fluids 15, 1766 (2003) CrossRef
Pereda, J.A., Vielva, L.A., Vegas, A., Prieto, A., J. Phys. III France 3, 539 (1993) CrossRef
Vasseur, J.O., Deymier, P.A., Chenni, B., Djafari-Rouhani, B., Dobrzynski, L., Prevost, D., Phys. Rev. Lett. 86, 3012 (2001) CrossRef
Sánchez-Pérez, J.V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., Llinares, J., Gálvez, F., Phys. Rev. Lett. 80, 5325 (1998) CrossRef
Kushwaha, M.S., Halevi, P., Martínez, G., Dobrzynski, L., Djafari-Rouhani, B., Phys. Rev. B 49, 2313 (1994) CrossRef
Kushwaha, M.S., Appl. Phys. Lett. 70, 3218 (1997) CrossRef
McPhedran, R.C., Nicorovici, N.A., Botten, L.C., J. Phys. A.: Math. Gen. 38, 8353 (2005) CrossRef
Twersky, V., Arch. Ration. Mech. Anal. 8, 323 (1961) CrossRef
Twersky, V., IRE T. Ant. Propag. 4, 737 (1963)
Linton, C.M., J. Phys. A.: Math. Gen. 39, 3325 (2006) CrossRef
Tournat, V., Pagneux, V., Lafarge, D., Jaouen, L., Phys. Rev. E 70, 026609 (2004) CrossRef
P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968)
A.D. Pierce, Acoustics, An Introduction to Its Physical Principles and Applications (McGraw-Hill, New York, 1981)
Chen, Y.Y., Ye, Z., Phys. Rev. Lett. 87, 184301 (2001) CrossRef
L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, New York, 1946)
Perrins, W.T., McKenzie, D.R., McPhedran, R.C., Proc. R. Soc. Lond. A 369, 207 (1979) CrossRef