Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T17:43:11.598Z Has data issue: false hasContentIssue false

Trajectories of field emitted ions in 3D atom-probe

Published online by Cambridge University Press:  15 May 1999

F. Vurpillot
Affiliation:
Sonde Atomique et Microstructures (UMR CNRS 6634), UFR Sciences, 76821 Mont-Saint-Aignan, France
A. Bostel
Affiliation:
Sonde Atomique et Microstructures (UMR CNRS 6634), UFR Sciences, 76821 Mont-Saint-Aignan, France
A. Menand
Affiliation:
Sonde Atomique et Microstructures (UMR CNRS 6634), UFR Sciences, 76821 Mont-Saint-Aignan, France
D. Blavette*
Affiliation:
Sonde Atomique et Microstructures (UMR CNRS 6634), UFR Sciences, 76821 Mont-Saint-Aignan, France
Get access

Abstract

The improvement of the lateral resolution of 3D atom probe requires the ion trajectories to be determined accurately. For the first time, the atomic structure of the emitter (a sharp tip) and the gradual change of its topology during evaporation are taken into account. Atoms submitted to the highest field are removed one by one. Ion trajectories are then simulated step by step after each atom has been removed from the sample surface. The recurrent use of a simulation software (SIMION 3D) for each elemental step makes it possible to model the image transfer function of 3D atom-probe for a non-stationary shape of the emitter. This dynamic model, applied to atom probe data, is shown to correct for the major aberrations present at the centre of low-index poles. The well-known depleted zone present at the pole centre is shown to disappear using this model. An almost constant density of atoms is then observed over the entire analysis area. For the first time, a physical interpretation of these depleted zones is provided and confirmed through simulation and experiments.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B., Menand, A., Nature 363, 432 (1993). CrossRef
Blavette, D., Deconihout, B., Chambreland, S., Bostel, A., Ultramicroscopy 70, 115 (1998). CrossRef
Panitz, J., Progr. Surf. Sci. 8, 219 (1978). CrossRef
Waugh, A.R., Boyes, E.D., Southon, M.J., Surf. Sci. 61, 109 (1976). CrossRef
Moore, A.J.W., Philos. Mag. A 43, 803 (1981). CrossRef
M.K. Miller, A. Cerezo, M.G. Hetherington, G.D.W Smith, Atom Probe Field Ion Microscopy (Oxford Science Publ., Clarendon Press, Oxford, 1996).
E. Durant, Electrostatique (Masson, Paris, 1964).
Krishnaswamy, S.V., Mueller, E.W., Rev. Sci. Instr. 45, 1049 (1974). CrossRef
Sarrau, J.M, Bostel, A., Martin, C., Gallot, J., C.R.A.S. B T283, 323 (1976).
Birdseye, P.J., Smith, D.A., Surf. Sci. 28, 198 (1970). CrossRef
P. Bas, A. Bostel, B. Deconihout, D. Blavette, Appl. Surf. Sci. 87/88, 298 (1995).
Plummer, E.W., Rhodin, T.N., J. Chem. Phys. 49, 3479 (1970). CrossRef
Menand, A., Gallot, J., Rev. Phys. Appl. 9, 323 (1974). CrossRef