Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:23:27.605Z Has data issue: false hasContentIssue false

Toward SiC-JFETs modelling with temperature dependence

Published online by Cambridge University Press:  06 October 2010

T. Ben Salah*
Affiliation:
Université de Lyon, INSA-Lyon, Lab. Ampère, CNRS, Lyon, France and Electrical System Laboratory, UR03ES05, ENIT, Tunis, Tunisia
H. Morel
Affiliation:
Université de Lyon, INSA-Lyon, Lab. Ampère, CNRS, Lyon, France and Electrical System Laboratory, UR03ES05, ENIT, Tunis, Tunisia
S. Mtimet
Affiliation:
Université de Lyon, INSA-Lyon, Lab. Ampère, CNRS, Lyon, France and Electrical System Laboratory, UR03ES05, ENIT, Tunis, Tunisia
Get access

Abstract

This paper focuses on the modelling of a SiC-JFET. The novelty aspect is the dependence on temperature. An accurate model has been used in a previous work and an identification procedure for the main model parameters has been demonstrated. Readers have asked for a more advanced SiC JFET temperature-dependent model. A limitation of the current model versus temperature is verified and explained in order to introduce the necessity of a new temperature dependence model. A more advanced model is then considered and a comparative study between experiment and simulation of the device is established. The characteristics of three SiC JFETs devices are considered from experimental and simulation point-of-view. Simulations results clearly replicate the experimental data at different temperatures and a new validity approach, namely validity maps, is proposed. Validity domains are discussed.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, State of the art of High Temperature Power Electronics, in Proc. of Microtherm, Lodz, Poland, 2009, p. 1
L.D. Marlino, High temperature and thermal management needs for the freedomcar program, in Proc. of High Temperature Electronics Conf. Conf. (HiTEC), Santa Fe, NM, 2006, p. 1
E. Kolawa, M. Mojarradi, T. Balint, Applications of high temperature electronics in space exploration, in Proc. of High Temperature Electronics Conf. (HiTEC), Santa Fe, NM, 2006, p. 1
Casady, J.B., Johnson, R.W., Solid-State Electron. 39, 10 (1996)
Ben Salah, T., Lahbib, Y., Morel, H., Eur. Phys. J. Appl. Phys. 48, 30305 (2009) CrossRef
Rueschenschmidt, K., Treu, M., Rupp, R., Friedrichs, P., Elpelt, R., Peters, D., Blaschitz, P., Mater. Sci. Forum 600-603, 901 (2009) CrossRef
R. Mousa, D. Planson, H. Morel, C. Raynaud, Modeling and high temperature characterization of SiC-JFET, in Proc. of Power Electronics Specialists Conf., PESC 2008, p. 3111
S. Sze, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2001)
B. Baliga, Modern Power Devices, 2nd edn. (Krieger, Malabar, FL, 1995)
D. Bergogne, H. Morel, D. Planson, D. Tournier, P. Bevilacqua, B. Allard, R. Meuret, S. Vieillard, S. Rael, F. Meibody Tabar, Towards an Airborne High Temperature SiC Inverter, in Proc. IEEE Power Electronics Specialists Conf., PESC 2008, p. 3178
Najjari, M., Mnif, H., Samet, H., Masmoudi, N., Eur. Phys. J. Appl. Phys. 41, 1 (2008) CrossRef
Ben Salah, T., Amairi, M., Sassi, Z., Morel, H., Sens. Lett. 7, 5 (2009)
Garrab, H., Allard, B., Morel, H., Ammous, K., Ghedira, S., Ammimi, A., Besbes, K., Guichon, J.M., IEEE Trans. Power Electron. 20, 3 (2005) CrossRef