Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T00:20:29.407Z Has data issue: false hasContentIssue false

Topology of evolving pore networks

Published online by Cambridge University Press:  23 October 2012

P. Levitz*
Affiliation:
Université Pierre et Marie Curie, CNRS, Laboratory PECSA, 75252 Paris, France Physique de la Matière Condensée, École polytechnique, CNRS, 91128 Palaiseau, France
V. Tariel
Affiliation:
Physique de la Matière Condensée, École polytechnique, CNRS, 91128 Palaiseau, France
M. Stampanoni
Affiliation:
Swiss Light Source, Paul Sherrer Institute, CH-5232 Villigen, Switzerland
E. Gallucci
Affiliation:
Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
*
Get access

Abstract

Morphological and topological quantification of complex pore networks is of great relevance for environmental engineering, earth science and industry. Recent developments of 3D imaging techniques such as X-ray microtomography or X-ray microscopy provide an opportunity to perform a comprehensive analysis of the pore network topology. Such an analysis is crucial to understand how transport or mechanical properties evolve during the growth and/or the aging of a pore network, especially near a percolation threshold. In the first part of this work, we present some properties related to the graph of retraction of a 3D pore network, a powerful way to characterize the topological evolution. In the second part, we analyze the topology of an evolving 3D pore network in the vicinity of a percolation transition. Two distinct scenarii of evolution are presented. The last part is dedicated to an experimental example of evolving pore network: the setting of an ordinary cement paste probed in its early age by synchrotron X-ray microcomputerized tomography.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lichtner, P.C., Steefel, C.I., Oelkers, E.H., Reactive Transport in Porous Media (Mineralogical Society of America, Washington, DC, 1996), p. 438Google Scholar
Han, M., Youssef, S., Rosenberg, E., Fleury, M., Levitz, P., Phys. Rev. E 79, 031127 (2009)CrossRef
Stauffer, D., Aharony, A., Introduction to Percolation Theory (Taylor & Francis, London, 1994), p. 181Google Scholar
Midgley, P., Dunin-Borkowski, A., Rafal, E., Nat. Mater. 8, 271 (2009)CrossRef
Kak, A.C., Slaney, M., Principles of Computerized Tomographic Imaging (Society for Industrial Mathematics, Philadelphia, PA, 2001)CrossRefGoogle Scholar
Brisard, S., Chae, R.S., Bihannic, I., Michot, L., Guttmann, P., Thieme, J., Schneider, J., Monteiro, P.J.M., Levitz, P., Am. Mineral. 97, 480 (2012)CrossRef
Levitz, P., Cem. Concr. Res. 37, 351 (2007)CrossRef
Barrett, L.K., Yust, C.S., Metallography 3, 1 (1970)CrossRef
Lin, C., Cohen, M.H., J. Appl. Phys. 59, 328 (1994)
Levitz, P., in Handbook of Porous Media, edited by Sing, K. (Wiley-VCH, 2002), Chap. 2Google Scholar
Pothuaud, L., Porion, P., Lespessailles, E., Benhamou, C.L., Levitz, P., J. Microsc. 199, 149 (2000)CrossRef
Serra, J., Image Analysis and Mathematical Morphology (Academic Press, London, 1982)Google Scholar
Thovert, J.F., Salles, J., Adler, P.M., J. Microsc. 170, 65 (1993)CrossRef
Bretheau, T., Jeulin, D., Rev. Phys. Appl. 24, 861 (1989)CrossRef
Jeulin, D., Stat. Comput. 10, 121 (2000)CrossRef
Mecke, K.R., Wagner, H., J. Stat. Phys. 64, 843 (1991)CrossRef
Roberts, A.P., Teubner, M., Phys. Rev. E 51, 4141 (1995)CrossRef
Jouannot, J., Jernot, J.P., Guyon, E., C.R. Acad. Sci. Paris, Série II B. 321, 425 (1995)
Roberts, J.N., Schwartz, L.M., Phys. Rev. B 31, 5990 (1985)CrossRef
Levitz, P., Adv. Colloid Interface Sci. 76–77, 71 (1998)CrossRef
Levitz, P., Ehret, G., Sinha, S.K., Drake, J.M., J. Chem. Phys. 95, 6151 (1991)CrossRef
Schwartz, L.M., Banavar, J., Phys. Rev. B 39, 11965 (1989)CrossRef
Wong, P.O., Koplik, J., Tomanic, J.P., Phys. Rev. B 30, 6606 (1984)CrossRef
Sen, P.N., Scala, C., Cohen, M.H., Geophysics 46, 781 (1981)CrossRef
Powers, T.C., Bownyard, T.L., ACI J. Proc. 43, (1946–1948)
Maggion, R., Tinet, D., Levitz, P., Van Damme, H., in Hydration and Setting of Cements, edited by Nonat, A., Mutin, J.C. (E & FN Spon Chapman & Hall, London, 1992), pp. 369379Google Scholar
Gallucci, E., Scrivener, K., Groso, A., Stampanoni, M., Margaritondo, G., Cem. Concr. Res. 37, 360 (2007)CrossRef
Davis, L.S., Rosenfeld, A., Weszka, J.S., IEEE Trans. Syst. Man Cybern. SMC5, 383 (1975)CrossRef
Grimaud, M., SPIE, Image Algebra and Morphological Processing III 1769, 292 (1992)CrossRef
Tariel, V., Ph.D. thesis, École polytechnique, France, 2009
Chemmi, H., Ph.D. thesis, École polytechnique, France, 2011
Richardson, I.D., Cem. Concr. Res. 34, 1733 (2004)CrossRef