Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T16:35:42.514Z Has data issue: false hasContentIssue false

Top seeding melt texture growth of NdBaCuO pellets in air*

Published online by Cambridge University Press:  15 March 2001

E. Guilmeau
Affiliation:
CRISMAT Laboratory (UMR 6508 CNRS/ISMRA), 6 boulevard du Maréchal Juin, 14050 Caen, France
F. Giovannelli*
Affiliation:
CRISMAT Laboratory (UMR 6508 CNRS/ISMRA), 6 boulevard du Maréchal Juin, 14050 Caen, France
I. Monot-Laffez
Affiliation:
CRISMAT Laboratory (UMR 6508 CNRS/ISMRA), 6 boulevard du Maréchal Juin, 14050 Caen, France
S. Marinel
Affiliation:
CRISMAT Laboratory (UMR 6508 CNRS/ISMRA), 6 boulevard du Maréchal Juin, 14050 Caen, France
J. Provost
Affiliation:
CRISMAT Laboratory (UMR 6508 CNRS/ISMRA), 6 boulevard du Maréchal Juin, 14050 Caen, France
G. Desgardin
Affiliation:
CRISMAT Laboratory (UMR 6508 CNRS/ISMRA), 6 boulevard du Maréchal Juin, 14050 Caen, France
Get access

Abstract

Most of NdBaCuO synthesis were realized under oxygen controlled melt growth (OCMG) which allows to avoid the solid solution formation. However, for industrial applications air synthesis is preferable due to its simplicity and its cost. In this work, different seeds and thermal cycles have been investigated in order to optimize the nucleation conditions for the obtention of a single domain. Several criteria have been defined for the choice of the seed. The solid solution Nd1+xBa2−xCu3Oy formed in these air synthesised samples appears in the range of x = 0.10 to 0.15, corresponding to $T_{\rm c_{onset}}$ between 60 K and 80 K. The nominal composition and the synthesis conditions (substrate, thermal treatments.) have to be accurately defined in order to avoid neodymium-rich solid solution formation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper has been presented in “Sixièmes journées de cryogénie et supraconductivité” at Aussois on May 16-19, 2000.

References

Matsui, Y., Takekawa, S., Ivy, N., Jpn J. Appl. Phys. 26, L1693 (1987). CrossRef
Yoo, S.I., McCallum, R.W., Physica C 219, 157 (1994).
Kramer, M.J., Yoo, S.I., McCallum, R.W., Yelon, W.B., Xie, H., Allenspach, P., Physica C 219, 145 (1994). CrossRef
Yoo, S.I., Sakai, N., Takaichi, H., Higuchi, T., Murakami, M., Appl. Phys. Lett. 65, 633 (1994). CrossRef
Leblond, C., Monot, I., Provost, J., Desgardin, G., Physica C 311, 211 (1999). CrossRef
Hu, A.M., Zhao, Z.X., Wu, M.Z., Wende, C., Strasser, T., Jung, B., Bruchlos, G., Gawalek, W., Goernert, P., Physica C 278, 43 (1997). CrossRef
Prouteau, C., Hamet, J.F., Mercey, B., Hervieu, M., Raveau, B., Robbes, D., Coudrier, L., Ben, G., Physica C 248, 108 (1995). CrossRef
Hari Babu, N., Lo, W., Cardwell, D.A., Shi, Y.H., Sup. Sci. Tech. 13, 468 (2000). CrossRef
Koblischka, M.R., Muralidhar, M., Murakami, M., Mater. Sci. Eng. B 65, 58 (1999). CrossRef
H. Chauhan, M. Murakami, Proceeding 2nd PASREG Morioka, Japan, 19 Oct., 1999.
Pinol, S., Sandiumenge, F., Martinez, B., Gomis, V., Fontcuberta, J., Obradors, X., Snoeck, E., Rouceau, Ch., Appl. Phys. Lett. 65, 1488 (1994). CrossRef
Marinel, S., Monot, I., Provost, J., Desgardin, G., Supercond. Sci. Technol. 11, 563 (1998). CrossRef