Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T20:39:44.854Z Has data issue: false hasContentIssue false

Tilt growth of the epilayer with large lattice mismatchto the substrate

Published online by Cambridge University Press:  30 May 2007

L. Wan*
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
J. Shangguan
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
H. Luo
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
Y. Huang
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
B. Tang
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
Get access

Abstract

Tilt growth is usually observed for the thin film growth on a substrate. Such tilt growth is considered as a consequence of the relaxation of the misfit strain between the epilayer and the substrate. In this paper, we propose a theoretical method to obtain the tilt angle of the epilayer, especially suitable for the heterostructure with large misfit strain which can be more than 10%. As an application of our method, we focus on two growth cases. One case is the growth of MnAs epilayer on GaAs (113) substrate with the lattice mismatch between the MnAs epilayer and the GaAs (113) substrate as high as 80%. And the other case is the growth of GaN epilayers on GaAs $\{1 \overline 1 l\}$ substrates. Results calculated from our method for the two cases agree well with the experimental observations. This method is general, and can be applied to other material systems with large lattice mismatch.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Däweritz, L., Wan, L., Jenichen, B., Herrmann, C., Mohanty, J., Trampert, A., Ploog, K.H., J. Appl. Phys. 34, 581 (2004)
Yamada, A., Fons, P.J., Hunger, R., Iwata, K., Matsubara, K., Niki, S., Appl. Phys. Lett. 79, 608 (2001) CrossRef
Mitsuru Funato, Shuichiro, Yamamoto, Kiyohiro Kaisei, Koichiro Shimogami, Shizuo Fujita, Shigeo Fujita, Appl. Phys. Lett. 79, 4133 (2001)
Dodson, B.W., Myers, D.R., Datye, A.K., Kaushik, V.S., Kendall, D.L., Martinez-Tovar, B., Phys. Rev. Lett. 61, 2681 (1988) CrossRef
Stemmer, S., Pirouz, P., Ikuhara, Y., Davis, R.F., Phys. Rev. Lett. 77, 1797 (1996) CrossRef
Ramsteiner, M., Hao, H.Y., Kawaharazuka, A., Zhu, H.J., Kastner, M., Hey, R., Daweritz, L., Grahn, H.T., Ploog, K.H., Phys. Rev. B 66, 081304(R) (2002) CrossRef
Menyuk, N., Kafalas, J.A., Dwight, K., Goodenough, J.B., Phys. Rev. 177, 942 (1969) CrossRef
G. Prinz, Phys. Today 48, No. 4 (1995)
Di Vincenzo, D.P., Science 270, 255 (1995) CrossRef
Notzel, R., Daweritz, L., Ploog, K., J. Cryst. Growth 115, 318 (1991) CrossRef
Trampert, A., Physica E (Amsterdam) 13, 1119 (2002) CrossRef
L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Pergamon, New York, 1986)
Kaganer, V.M., Jenichen, B., Schippan, F., Braun, W., Däweritz, L., Ploog, K.H., Phys. Rev. Lett. 85, 341 (2000) CrossRef
Trampert, A., Schippan, F., Daeweritz, L., Ploog, K.H., Appl. Phys. Lett. 78, 2461 (2001) CrossRef
Li Wan, X.F. Duan, H. Chen, Hongfei Liu, Zhiqiang Li, Q. Huang, J.M. Zhou, J. Cryst. Growth 220, 379 (2000) CrossRef
Li Wan, X.F. Duan, H. Chen, Hongfei Liu, Zhiqiang Li, Q. Huang, J.M. Zhou, J. Cryst. Growth 222, 507 (2001) CrossRef