Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T22:39:58.518Z Has data issue: false hasContentIssue false

Thienopyrazine-based low-bandgap polymers for flexible polymer solar cells

Published online by Cambridge University Press:  02 September 2010

S. Sensfuss*
Affiliation:
Dept. Functional Polymer Systems and Physical Research, TITK Research Institute, Breitscheidstr. 97, 07407 Rudolstadt, Germany
L. Blankenburg
Affiliation:
Dept. Functional Polymer Systems and Physical Research, TITK Research Institute, Breitscheidstr. 97, 07407 Rudolstadt, Germany
H. Schache
Affiliation:
Dept. Functional Polymer Systems and Physical Research, TITK Research Institute, Breitscheidstr. 97, 07407 Rudolstadt, Germany
S. Shokhovets
Affiliation:
Ilmenau Technical University, Institute for Physics, Weimarer Str. 32, 98684 Ilmenau, Germany
T. Erb
Affiliation:
Ilmenau Technical University, Institute for Physics, Weimarer Str. 32, 98684 Ilmenau, Germany
A. Konkin
Affiliation:
TU Ilmenau, Center for Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, 98693 Ilmenau, Germany
A. Herasimovich
Affiliation:
TU Ilmenau, Institute of Solid State Electronics, PF 10 05 65, 98684 Ilmenau, Germany
S. Scheinert
Affiliation:
TU Ilmenau, Institute of Solid State Electronics, PF 10 05 65, 98684 Ilmenau, Germany
M. Shahid
Affiliation:
Friedrich-Schiller-University of Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Humboldt-Str. 10, 07743 Jena, Germany
S. Sell
Affiliation:
Jenpolymer Materials Ltd. & Co. KG, Wildenbruchstr. 15, 07745 Jena, Germany
E. Klemm
Affiliation:
Friedrich-Schiller-University of Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Humboldt-Str. 10, 07743 Jena, Germany Jenpolymer Materials Ltd. & Co. KG, Wildenbruchstr. 15, 07745 Jena, Germany
Get access

Abstract

The optical gaps of the low-bandgap PPVs (PM-20, PM-19, PM-18) are decreased down to 1.6-1.7 eV compared with that of MDMO-PPV (2.2 eV). The best lateral hole mobility was determined to be 2.1 × 10-3 cm2/V s (PM-18) in field effect transistors and exceeds that of MDMO-PPV (poly-[ 2-methoxy-5-(3'.7'-dimethyloctyloxy)-1.4-phenylenevinylene], 8.5 × 10-4 cm2/V s). This allows to reduce the PCBM ([6.6]-phenyl-C $_{61(71)}$ -butanoic acid methyl ester) content in solar cell devices down to 1:2 w/w giving a better $\eta_{\rm AM1.5}$ than for MDMO-PPV:[60]-PCBM cells (PM-19:[60]-PCBM 2.32% on ITO-PET, 2.86% on ITO glass). The charge transfer to PCBM as acceptor occurs quite normally and shows an effective charge separation using light-induced spin resonance spectroscopy (LESR). The [70]-PCBM $^{-\bullet}$ signals are shifted to lower field related to those of [60]-PCBM $^{-\bullet}$ and overlap more with the polaron signal of PM-19. The LESR g-factor components of [70]-PCBM $^{-\bullet}$ are reported for the first time. The external quantum efficiency peak values achieve up to 42% at ~350–400 nm and 26% at ~640 nm (PM-19:[60]-PCBM).

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brabec, C.J., Hauch, J.A., Schilinsky, P., Waldauf, C., MRS Bull. 30, 50 (2005) CrossRef
Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., Nat. Mater. 4, 864 (2005) CrossRef
Reyes-Reyes, M., Kim, K., Carrolla, D.L., Appl. Phys. Lett. 87, 083506 (2005) CrossRef
Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A.J., Adv. Funct. Mater. 15, 1617 (2005) CrossRef
Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.-S., Ree, M., Nat. Mater. 5, 197 (2006) CrossRef
Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., Bazan, G.C., Nat. Mater. 6, 497 (2007) CrossRef
Lee, J.K., Ma, W.L., Brabec, C.J., Yuen, J., Moon, J.S., Kim, J.Y., Lee, K., Bazan, G.C., Heeger, A.J., J. Am. Chem. Soc. 130, 3619 (2008) CrossRef
Liang, Y., Wu, Y., Feng, D., Tsai, S.-T., Son, H.-J., Li, G., Yu, L., J. Am. Chem. Soc. 131, 56 (2009) CrossRef
Park, S.H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., Heeger, A.J., Nat. Photon. 3, 297 (2009) CrossRef
Bundgaard, E., Krebs, F.C., Sol. Energy Mater. Sol. Cells 91, 954 (2007) CrossRef
Drury, A., Maier, S., Rüther, M., Blau, W.J., J. Mater. Chem. 13, 485 (2003) CrossRef
Shahid, M., Ashraf, R.S., Klemm, E., Sensfuss, S., Macromolecules 39, 7844 (2006) CrossRef
Hellström, S., Zhang, F., Inganäs, O., Andersson, M.R., Dalton Trans. 45, 10032 (2009), www.rsc.org/ej/DT/2009/b913769f.pdf CrossRef
Hoppe, H., Niggemann, M., Winder, C., Kraut, J., Hiesgen, R., Hinsch, A., Meissner, D., Sariciftci, N.S., Adv. Funct. Mater. 14, 1005 (2004) CrossRef
Brabec, C.J., Sariciftci, N.S., Hummelen, J.C., Adv. Funct. Mater. 11, 15 (2001) 3.0.CO;2-A>CrossRef
Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., Brabec, C.J., Adv. Mater. 18, 789 (2006) CrossRef
Liu, L., Shi, Y., Yang, Y., Adv. Funct. Mater. 11, 420 (2001) 3.0.CO;2-K>CrossRef
Frohne, H., Shaheen, S.E., Brabec, C.J., Müller, D.C., Sariciftci, N.S., Meerholz, K., Chem. Phys. Chem. 3, 795 (2002) 3.0.CO;2-A>CrossRef
Tvingstedt, K., Vandewal, K., Gadisa, A., Zhang, F., Manca, J., Inganäs, O., J. Am. Chem. Soc. 131, 11819 (2009) CrossRef
Garcia-Belmonte, G., Bisquert, J., Appl. Phys. Lett. 96, 113301 (2010) CrossRef