Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T14:40:33.927Z Has data issue: false hasContentIssue false

Thermo-elastic properties characterization by photothermal microscopy*

Published online by Cambridge University Press:  15 September 2003

J. Jumel
Affiliation:
ONERA/DMSE/MECS, BP 72, 92322 Châtillon Cedex, France CEA Le Ripault, BP16, 37260 Monts, France
F. Taillade
Affiliation:
ONERA/DMSE/MECS, BP 72, 92322 Châtillon Cedex, France
F. Lepoutre*
Affiliation:
ONERA/DMSE/MECS, BP 72, 92322 Châtillon Cedex, France
Get access

Abstract

A photothermal microscope devoted to microscopic thermal and thermo-elastic characterizations is presented. In thermal configuration, the sample is heated by an intensity modulated laser beam and the periodic temperature increase at the sample surface is detected using the photoreflectance technique. In thermo-elastic configuration, the periodic elevation of the sample surface is measured using a Nomarski interferometer. The spatial resolution is micrometric, the sensivity is better than 10−3 K/ $\surd$ Hz in thermal configuration and 10 pm/ $\surd$ Hz in the interferometric one. Typical photoreflectance thermal properties measurements are performed to evaluate the performance of the instrument. In thermo-elastic configuration, the interferometric signal has to be carefully analyzed to remove spurious photothermal effects. The thermo-elastic response of isotropic and anisotropic homogeneous samples during modulated photothermal experiments are then calculated to demonstrate that interferometric measurements enable quantitative determination of some of the sample thermo-elastic parameters such as thermal diffusivity, elastic anisotropy and crystalline orientation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Thispaper has been first presented orally at the C2I colloquium in February 2001

References

Pottier, L., Appl. Phys. Lett. 64, 1618 (1994) CrossRef
Li, B., Pottier, L., Roger, J.P., Fournier, D., Thin Solid Films 352, 91 (1999) CrossRef
Lepoutre, F., Balageas, D., Forge, Ph., Hirschi, S., Joulaud, J.L., J. Appl. Phys. 74, 2208 (1995) CrossRef
Mansanares, A.M., Velinov, T., Bozoki, Z., Fournier, D., Boccara, A.C., J. Appl. Phys. 75, 3344 (1994) CrossRef
J. Jumel, F. Lepoutre, M. Frie $\beta$ , W. Krenkel, G. Neuer, Microscopic thermal characterization of C/C-SiC composites, in Proceedings of the High Temperature Ceramic Matrix Composites, Munich, 2001, edited by W. Krenkel, R. Naslain, H. Schneider, pp. 120-126
Wolf, B., Paufler, P., Eur. Microsc. Anal. 16, 21 (1999)
Hurley, D.H., Wright, O.B., Matsuda, O., Gusev, V.E., Kolosov, O.V., Ultrasonics 38, 470 (2000) CrossRef
Welsch, E., J. Modern Opt. 38, 2159 (1991) CrossRef
Cretin, B., Takadoum, J., Mahmoud, A., Hauden, D., Thin Solid Films 209, 127 (1992) CrossRef
Rosencwaig, A., Opsal, J., IEEE 33, 516 (1986)
Liu, M., Suddendorf, M.B., Somekh, M.G., J. Appl. Phys. 76, 207 (1994) CrossRef
Velinov, T., Meas. Sci. Tech. 6, 28 (1995) CrossRef
Lee, E.H., Lee, K.J., Jeon, P.S., J. Appl. Phys. 88, 588 (2000) CrossRef
Mandelis, A., J. Appl. Phys. 78, 647 (1995) CrossRef
Gleyzes, P., Boccara, A.C., Opt. Lett. 22, 1529 (1997) CrossRef
Gleyzes, P., Boccara, A.C., J. Opt. 25, 207 (1994) CrossRef
Fanton, J.T., Kino, G.S., Appl. Phys. Lett. 51, 66 (1987) CrossRef
Rosencwaig, A., Opsal, J., Smith, W.L., Willenborg, D.L., Appl. Phys. Lett. 46, 1013 (1985) CrossRef
Fang, J.W., Zhang, S.Y., Appl. Phys. B 67, 633 (1998) CrossRef
Fiedler, C.J., Wagner, J.W., Henseler, K.E., Rev. Sci. Instrum. 71, 3853 (2000) CrossRef
Georgiadis, H.G., Vamvatsikos, D., Vardoulakis, I., Comp. Mech. 24, 90 (1999) CrossRef
Cheng, J.C., Zhang, S.Y., J. Appl. Phys. 70, 6999 (1991) CrossRef
Hirschi, S., Boccara, A.C., Lepoutre, F., Bozoki, Z., J. Opt. 26, 142 (1997) CrossRef