Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:00:46.195Z Has data issue: false hasContentIssue false

Thermal and mechanical properties of blends of LDPE and EVA crosslinked by electron beam radiation

Published online by Cambridge University Press:  22 August 2013

Mahmoud Borhani Zarandi*
Affiliation:
Department of Physics, Yazd Branch, Islamic Azad University, 8916871967 Yazd, Iran
Hojjat Amrollahi Bioki
Affiliation:
Department of Physics, Yazd University, P.O. Box 89195-741, Yazd, Iran
*
Get access

Abstract

Low density polyethylene (LDPE) blends with different percentages of ethylene vinyl acetate (EVA) irradiated with 10 MeV electron beam in the range of 50–250 kGy at room temperature. The effect of irradiation and EVA content on the mechanical and thermal properties of LDPE was studied. It was revealed that for all blends increasing the applied dose up to 150 kGy would result in decrease in the specific heat capacity (cp) and thermal conductivity (k) of LDPE and then raised slightly with further increased in radiation doses. The gel content showed that under the irradiation, the crosslinking density at each irradiation dose depends almost on the amorphous portions of the LDPE/EVA. The mechanical properties of LDPE/EVA blends were found to be influenced by the electron beam irradiation and EVA content. It can be deduced that the mechanical properties of LDPE are improved by blending with EVA and irradiated by electron beam. Fourier transform infrared (FTIR) spectroscopy was used to characterize the structure of LDPE. Result indicates small variation in crystalline content, which could be increased or decreased on the formation of important bond groups.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Bary, E.M., El-Nesr, E.M., Rad. Phys. Chem. 48, 689 (1996)CrossRef
Hoyle, C.E., Kinstle, J.F., Radiation Curing of Polymeric Materials (ACS Publications, Washington DC, 1990)CrossRefGoogle Scholar
Mateev, M., Karageorgiev, S., Rad. Phys. Chem. 51, 205 (1998)
Charlesby, A., Atomic Radiation and Polymers 1, 198 (1960)CrossRef
Cheng, S., Phillips, E., Parks, L., Rad. Phys. Chem. 79, 329 (2010)CrossRef
Ciesla, K., Salmieri, S., Lacroix, M., J. Agric. Food Chem. 54, 6374 (2006)CrossRef
Hutzler, B., Machado, L., Villavicencio, A.L.C.H., Lugao, A., Rad. Phys. Chem. 57, 431 (2000)CrossRef
Kattan, M., Dargent, E., Grenet, J., Polymer 43, 1399 (2002)CrossRef
Vaughan, A., Stevens, G., Polymer 42, 8891 (2001)CrossRef
Devanne, T., Bry, A., Audouin, L., Verdu, J., Polymer 46, 229 (2005)CrossRef
Bhateja, S., Andrews, E., Young, R., J. Polym. Sci. Phys. Ed. 21, 523 (2003)CrossRef
Zhudi, Z., Wenxue, Y., Xinfang, C., Rad. Phys. Chem. 65, 173 (2002)CrossRef
Puig, C., Albano, C., Laredo, E., Quero, E., Karam, A., Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms 268, 1466 (2010)CrossRef
Shea, J., Eur. Phys. J. Appl. Phys. 49, 649 (2010)CrossRef
Azizi, H., Morshedian, J., Barikani, M., Wagner, M., Expr. Polym. Lett. 4, 252 (2010)CrossRef
Logothetidis, S., Laskarakis, A., Eur. Phys. J. Appl. Phys. 46, 3 (2009)
Roberts, B., Verne, S., Plast. Rubber Process. Appl. 4, 135 (1984)
Azizi, H., Morshedian, J., Barikani, M., Plast. Rubber Compos. 39, 357 (2010)CrossRef
Takidis, G., Bikiaris, D., Papageorgiou, G., Achilias, D., Sideridou, I., J. Appl. Polym. Sci. 90, 841 (2003)CrossRef
Faker, M., Razavi Aghjeh, M.K., Ghaffari, M., Seyyedi, S.A., Eur. Polym. J. 44, 1834 (2008)CrossRef
Ray, I., Khastgir, D., Polymer 34, 2030 (1993)CrossRef
Khonakdar, H., Wagenknecht, U., Jafari, S., Hässler, R., Eslami, H., Adv. Polym. Technol. 23, 307 (2004)CrossRef
Li, C., Kong, Q., Zhao, J., Zhao, D., Fan, Q., Xia, Y., Mater. Lett. 58, 3613 (2004)CrossRef
Dalai, S., Wenxiu, C., J. Appl. Polym. Sci. 86, 1296 (2002)CrossRef
Scholten, F., Wolters, M., Plast. Rubber Compos. Process. Appl. 27, 465 (1998)
Spenadel, L., Rad. Phys. Chem. 14, 683 (1979)
Mathew, A.P., Oksman, K., Sain, M., J. Appl. Polym. Sci. 101, 300 (2006)CrossRef
Mathot, V.B., Benoist, L., Calorimetry and Thermal Analysis of Polymers (Hanser Munich, Vienna, NY, 1994)Google Scholar
Tashiro, K., Stein, R.S., Hsu, S.L., Macromolecules 25, 1801 (1992)CrossRef
Salehi, S., Mirjalili, G., Amrollahi, J., J. Appl. Polym. Sci. 92, 1049 (2004)CrossRef
Uvarov, N., Solid State Ion 136, 1267 (2000)CrossRef
Dadbin, S., Frounchi, M., Sabet, M., Polym. Intern. 54, 686 (2005)CrossRef
Sener, A.A., Demirhan, E., Materials and Design 29, 1376 (2008)CrossRef
Youssef, H.A., Senna, M.M., Eyssa, H.M., J. Polym. Res. 14, 351 (2007)CrossRef
Sabet, M., Hassan, A., Ratnam, C., Polym. Bull. 68, 2323 (2012)CrossRef
Sharif, J., Aziz, S.H.S.A., Hashim, K., Rad. Phys. Chem. 58, 191 (2000)CrossRef
Chen, S., Zhang, J., Su, J., J. Appl. Polym. Sci. 114, 3110 (2009)CrossRef
de Queiroz, A.A., Abraham, G.A., Higa, O.Z., Acta Biomater. 2, 641 (2006)CrossRef