Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:32:28.795Z Has data issue: false hasContentIssue false

Theoretical study on enhancement of the lateral photovoltaic effect for position sensitive detector with resonant cavity

Published online by Cambridge University Press:  26 November 2012

Feng Xi*
Affiliation:
Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, P.R. China
Lan Qin
Affiliation:
Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
Ying Duan
Affiliation:
Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
Lian Xue
Affiliation:
Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
*
Get access

Abstract

A one-dimensional (1D) position sensitive detector (PSD) with the active layer imbedded in resonant cavity is proposed. The lateral photovoltaic effect (LPE) on the surface of active layer is related to the lifetime of photo-generated carriers-electrons and holes pairs. Theoretically, by improving the transmittance of multiple layered systems, the lifetime of carriers can be lengthened. For a photodetector in near infrared, we design the multiple layered system stacked by alternating layers with MgF2 and InP. The calculated result of electric field distribution in the proposed PSD is maximized in active layer with appropriate thickness. By this means, our aim is theoretically accomplished to enhance LPE in PSD based on resonant cavity structure.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schottky, W., Physik. Z. 31, 913 (1930)
Wallmark, J., Proc. IRE 45, 474 (1957)CrossRef
Willens, R.H., Appl. Phys. Lett. 49, 663 (1986)CrossRef
Levine, B.F., Willens, R.H., Bethea, C.G., Brasen, D., Appl. Phys. Lett. 49, 1537 (1986)CrossRef
Levine, B.F., Willens, R.H., Bethea, C.G., Brasen, D., Appl. Phys. Lett. 49, 1608 (1986)CrossRef
Levine, B.F., Willens, R.H., Bethea, C.G., Brasen, D., Appl. Phys. Lett. 49, 1647 (1986)
Tabatabaie, N., Meynadier, M.H., Nahory, R.E., Harbison, J.P., Florez, L.T., Appl. Phys. Lett. 55, 792 (1989)CrossRef
Henry, J., Livingstone, J., J. Mater. Sci. Mater. Electron. 12, 387 (2001)CrossRef
Henry, J., Livingstone, J., Adv. Mat. 13, 1023 (2001)
Jin, K.J., Zhao, K., Lu, H.B., Liao, L., Yang, G.Z., Appl. Phys. Lett. 91, 081906 (2007)CrossRef
Andersson, H., Thungstrom, G., Nucl. Instrum. Methods Phys. Res. 531, 140 (2004)CrossRef
Xiao, S.Q., Wang, H., Yu, C.Q., Xia, Y.X., Lu, J.J., Jin, Q.Y., Wang, Z.H., New J. Physics 10, 033018 (2008)CrossRef
Xiao, S.Q., Wang, H., Zhao, Z.C., Xia, Y.X., J. Phys. D: Appl. Phys. 40, 5580 (2007)CrossRef
Henry, J., Livingstone, J., IEEE Sens. J. 11, 2071 (2011)CrossRef
Aguas, H., Pereira, L., Costa, D., Fortunato, E., Martins, R., Opt. Mater. 27, 1088 (2005)
Aguas, H., Pereira, L., Costa, D., Fortunato, E., Martins, R., J. Mater. Sci. 40, 1377 (2005)CrossRef
Buhler, D.W., Oxland, T.R., Nolte, L.P., Med. Eng. Phys. 19, 187 (1997)
Kim, J.K., Kim, M.S., Bae, J.H., Kwon, J.H., Lee, H.B., Jeong, S.H., Appl. Opt. 39, 2584 (2000)CrossRef
Kaufmann, K.J., Photon. Spectra 31, 167 (1997)
Park, W.S., Cho, H.S., Opt. Eng. 41, 860 (2002)CrossRef
Takeda, T., Amorphous and Microcrystalline Semiconductor Devices: Optoelectronic Devices (Artech House Publishers, Norwood, UK, 1991)Google Scholar
Makynen, A., Kostamovaara, J., Myllyla, R., Engineering Systems with Intelligence: Concepts, Tools and Applications (Kluwer, Dordrecht, The Netherlands, 1992), pp. 275284Google Scholar
Makynen, A., Kostamovaara, J., Rahkonen, T., IEEE Trans. Instrum. Meas. 43, 489 (1994)CrossRef
Makynen, A., Benten, H., Rahkonen, T., Kostamovaara, J., Proc. SPIE 3100, 89 (1997)
Fortunato, E., Lavareda, G., Martins, R., Soares, F., Fernandes, L., Sens. Actuators A 51, 135 (1996)CrossRef
Gee, J., Optically enhanced absorption in thin silicon layers using photonic crystals, in Twenty-Ninth IEEE Photovolt. Spec. Conf., 2002, pp. 150153Google Scholar
Bermel, P., Luo, C.Y., Zeng, L., Kimerling, L.C., Joannopoulos, J.D., Optic Express 15, 16986 (2007)CrossRef
Mutitu, J.M., Shi, S.Y., Chen, C.H., Creazzo, T., Barnett, A., Honsberg, C., Prather, D.W., Optic Express 16, 15238 (2008)CrossRef
Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987)CrossRef
John, S., Phys. Rev. Lett. 58, 2486 (1987)CrossRef
Tocci, M.D., Scalora, M., Bloemer, M.J., Dowling, J.P., Bowden, C.M., Phys. Rev. A 53, 2799 (1996)CrossRef
Djuric, Z., Jaksic, Z., Randjelovic, D., Dankovic, T., Ehrfeld, W., Schmidt, A., Infrared Phys. Technol. 40, 25 (1999)CrossRef
Djuric, Z., Fundamentals of Optoelectronic Devices (IHTM Publication, Belgrade, Yugoslavia, 1995)Google Scholar
Position sensitive detector catalog from Hamamatsu Corporation, 360 Foothill Road, P.O. Box 6910, Bridgewater, NJ
Born, M., Wolf, E., Principles of Optics (Electronic Industry Press, Peking, 2006)Google Scholar
Schacham, S.E., Finkman, E., J. Appl. Phys. 57, 2001 (1985)CrossRef