Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T18:34:23.689Z Has data issue: false hasContentIssue false

Theoretical and experimental operating wavelength of GaAs/Al0.25Ga0.75As IR photodetectors

Published online by Cambridge University Press:  31 January 2009

A. Almaggoussi*
Affiliation:
Équipe d'Étude des Matériaux Optoélectroniques (E.E.M.O.), LP2M2E F.S.T.G., BP 549 Marrakech, Morocco
A. Abounadi
Affiliation:
Équipe d'Étude des Matériaux Optoélectroniques (E.E.M.O.), LP2M2E F.S.T.G., BP 549 Marrakech, Morocco
H. Akabli
Affiliation:
Équipe d'Étude des Matériaux Optoélectroniques (E.E.M.O.), LP2M2E F.S.T.G., BP 549 Marrakech, Morocco
K. Zekentes
Affiliation:
Foundation for Research and Technology – Hellas (FORTH)/I.E.S.L Microelectronics, Research Group Vassilika Vouton, P.O. Box 1527, 71110 Heraklion, Crete, Greece
M. Androulaki
Affiliation:
Foundation for Research and Technology – Hellas (FORTH)/I.E.S.L Microelectronics, Research Group Vassilika Vouton, P.O. Box 1527, 71110 Heraklion, Crete, Greece
Get access

Abstract

IR photodetectors based on GaAs/Al0.25Ga0.75As multiquantum wells (QWIP) grown by molecular beam epitaxy (MBE) are studied. The envelop function formalism is used to determine the theoretical intersubband transition energies. The electronic states are calculated in both parabolic and non parabolic cases. IR spectroscopy transmission is used as the experimental technique to evaluate the optical absorption. The measures are made at 77 K for incidence at both 45° and Brewster angles geometries. The last experimental results compare well with the theoretical ones and correspond to 10–12  $\mu $ m operating wavelength.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hostut, M., Physica E 39, 50 (2007) CrossRef
Costard, E., Bois, P., De Rossi, A., Nedelcu, A., Cocle, O., Gauthier, F.H., Audier, F., C. R. Physique 4, 1089 (2003) CrossRef
Ting, D.Z.-Y., Chang, Y.-C., Bandara, S.V., Hill, C.J., Gunapala, S.D., Infrared Phys. Technol. 50, 136 (2007) CrossRef
Durante, F., Alves, P., Karunasiri, G., Hanson, N., Byloos, M., Liu, H.C., Bezinger, A., Buchanan, M., Infrared Phys. Technol. 50, 182 (2007)
Jhabvala, M., Infrared Phys. Technol. 42, 363 (2001) CrossRef
Levine, B.F., J. Appl. Phys. 74, R1 (1993) CrossRef
M.O. Manasreh, G.J. Brown, Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors, edited by M.O. Manasreh (Artech House, Boston, London, 1993), pp. 1–17
G. Bastard, Wave mechanics applied to semiconductor heterostructures (EDP Sciences, Paris, 1988)
Liu, C., Coon, D.D., Byungsung, O., Lin, Y.F., Francombe, M.H., Superlatt. Microstruct. 4, 343 (1988) CrossRef
Bastard, G., Phys. Rev. B 24, 5693 (1981) CrossRef
Nelson, D.F., Miller, R.C., Kleinman, D.A., Phys. Rev. B 35, 7770 (1987) CrossRef
Ekenberg, U., Phys. Rev. B 40, 7714 (1989) CrossRef
H.C. Liu, The basic physics of photoconductive quantum well infrared detectors, in Long Wavelength Infrared Detectors, edited by M. Razeghi (Gordon and Breach Science Publishers, 1996), ISBN 2-88449-208-9
Moharam, M.G., Pommet, D.A., Grann, E.B., Gaylord, T.K., J. Opt. Soc. Am. A 12, 1068 (1995) CrossRef
Moharam, M.G., Pommet, D.A., Grann, E.B., Gaylord, T.K., J. Opt. Soc. Am. A 12, 1077 (1995) CrossRef
Chen, C.J., Choi, K.K., Tidrow, M., Tsui, D.C., Appl. Phys. Lett. 68, 1446 (1996) CrossRef
Levine, B.F., Zussman, A., Gunapala, S.D., Asom, M.T., Kuo, J.M., Hobson, W.S., J. Appl. Phys. 72, 4429 (1992) CrossRef