Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T00:25:10.506Z Has data issue: false hasContentIssue false

Synthesis of nanocrystalline NiAl by mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process

Published online by Cambridge University Press:  09 December 2013

Soumia Arroussi*
Affiliation:
Laboratoire d’Étude et de Recherche des États Condensés (LEREC), Département de physique, Faculté des Sciences, Université d’Annaba, BP 12, 23000 Annaba, Algéria
Mahieddine Ali-Rachedi
Affiliation:
École Préparatoire aux Sciences et Techniques (EPST), BP 218, Annaba, Algéria
Abdelbaki Chemam
Affiliation:
École Préparatoire aux Sciences et Techniques (EPST), BP 218, Annaba, Algéria
Abdelaziz Benaldjia
Affiliation:
Laboratoire d’Étude et de Recherche des États Condensés (LEREC), Département de physique, Faculté des Sciences, Université d’Annaba, BP 12, 23000 Annaba, Algéria
Abdelaziz Amara
Affiliation:
Laboratoire d’Étude et de Recherche des États Condensés (LEREC), Département de physique, Faculté des Sciences, Université d’Annaba, BP 12, 23000 Annaba, Algéria
Brahim Gasmi
Affiliation:
Université Mohamed Khider, BP 145, RP 07000, Biskra, Algéria
Mohamed Andasmas
Affiliation:
LSPM, UPR 3407, CNRS, 99 av. J.B. Clément, 93430 Villetaneuse, France
Mohamed Guerioune
Affiliation:
Laboratoire d’Étude et de Recherche des États Condensés (LEREC), Département de physique, Faculté des Sciences, Université d’Annaba, BP 12, 23000 Annaba, Algéria
*
Get access

Abstract

The mechanically activated self-propagating high-temperature synthesis (MASHS) technique and the mechanically activated annealing process (M2AP) were used to produce NiAl intermetallic compound. Rietveld analysis of X-ray diffraction data was used to characterize the mechanically activated powders, MASHS and M2AP end-products. Two-phase (B2+L12) nickel aluminide intermetallic compounds were synthesized by the mechanically activated volume combustion synthesis (MASHS). A single phase B2 NiAl was formed when mechanically activated annealing process (M2AP) was performed. Starting from a mixture of elemental pure powders, both M2AP and MASHS milling processes lead to nanostructured powders. Structural analysis deduced from the Rietveld refinement of X-ray diffraction patterns of NiAl compounds synthesized by SHS after a milling of 6 h show the formation of β-NiAl phase with a cell parameter a = (0.2885 ± 1.2618 × 10−4) nm. The average crystallite size is D = (44.6421 ± 2.4263) nm and the microstrains values are close to those of metallic alloys τ = (0.2142 ± 1.6186 × 10−2)%. Finally, scanning electron microscopy (SEM) was carried out to characterize the microstructure of end-products.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cui, Y., Wei, Q., Park, H., Liber, C.M., Science 293, 1289 (2004)CrossRef
Champion, Y., Guêrin-Mailly, S., Bonnentien, J.L., Langlois, P., Scripta. Mater. 44, 1609 (2001)CrossRef
Gleiter, H., Prog. Mater. Sci. 33, 223 (1989)CrossRef
Meyers, M.A., Mishra, A., Benson, D.J., Prog. Mater. Sci. 51, 427 (2006)CrossRef
Margevicius, R.W., Lewandowski, J.J., Acta. Metal. Mater. 41, 485 (1993)CrossRef
Enayati, M.H., Karimzadeh, F., Anvari, S.Z., Mater. Proc. Technol. 200, 312 (2008)CrossRef
Sauthoff, G., Mater. Sci. Technol. 8, 643 (1996)
Fischer, S.H., Grubelich, M.C., Proceedings of the 24th International Pyrotechnics Seminar, 1998
Curfs, C., Turrillas, X., Vaughan, G.B.M., Terry, A.E., Kvick, Å., Rodríguez, M.A., Intermetallics 15, 1163 (2007)CrossRef
Dunand, D.C., Mater. Sci. 29, 4056 (1994)CrossRef
Moshksar, M.M., Mirzaee, M., Intermetallics 12, 1361 (2004)CrossRef
Ozdemir, O., Zeytin, S., Bindal, C., Vacuum 82, 311 (2008)CrossRef
Gauthier, V., Bernard, F., Gaffet, E., Vrel, D., Gailhanou, M., Larpin, J.P., Intermetallics 10, 377 (2002)CrossRef
Charlot, F., Bernard, F., Gaffet, E., Klein, D., Niepce, J.C., Acta. Mater. 47, 619 (1999)CrossRef
Archana, M.S., Hebalkar, N., Radha, K., Joardar, J., J. Alloys Compounds. 501, 18 (2010)CrossRef
Zhu, H.X., Abbaschian, R., J. Mater. Sci. 38, 3861 (2003)CrossRef
Suryanarayana, C., Prog. Mater. Sci. 46, 1 (2001)CrossRef
Suryanarayana, C., Mechanical Alloying and Milling (Marcel Dekker, New York, 2004)CrossRefGoogle Scholar
Bentayeb, F.Z., Thèse de doctorat Université de Annaba Algérie, 2005
Lee, J.H., Jung, J.C., Borovinskaya, I.P., Vershinnikov, V.I., Won, C.W., Met. Mater. 6, 73 (2000)CrossRef
Ali-Rachedi, M., Hendaoui, A., Vrel, D., Bounour, W., Amara, A., Guerioune, M., Int. J. Self-Propag. High-Temp. Synth. 15, 308 (2006)
Kalaydjiev, K., Lovchinov, V., Dimitrov, D., Kirov, M., Baychev, M., Popov, Chr., Radev, D.D., Marinov, M., Tumbalev, V., Radev, I., Vanderbemden, Ph., J. Optoelectron. Adv. Mater. 7, 423 (2005)
Gauthier, V., Josse, C., Bernard, F., Gaffet, E., Larpin, J.P., Mater. Sci. Eng. A265, 117 (1999)CrossRef
Marin-Ayral, R.M., in 2nd French-Russian Workshop on SHS Villetaneuse, France, 2006
Gras, Ch., Vrel, D., Gaffet, E., Bernard, F., J. Alloys. Compd. 314, 240 (2001)CrossRef
Ozdemir, O., Zeytin, S., Bindal, C., Vacuum 84, 430 (2009)CrossRef
Tingaud, D., Nardou, F., Intermetallics 16, 732 (2008)CrossRef
Rietveld, H.M., J. Appl. Crystallogr. 2, 65 (1969)CrossRef
Lutterotti, L., MAUD, CPD, Newsletter (IUCr), 24 (2000)
Morsi, K., J. Mater. Sci. Lett. 19, 331 (2000)CrossRef
Hansen, M., Anderko, K., Constitution of Binary Alloys, second edn. (Genium, New York, 1985), p. 119Google Scholar
Séverine Le Pévédic, Ph.D. Thesis, University Pierre et Marie CurieParis VI, 2007
Warren, B.E., X-ray Diffraction (Addision-Wesley, Reading, MA, 1969), Chap. 13Google Scholar