Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T05:26:17.202Z Has data issue: false hasContentIssue false

Synthesis and growth mechanism of Zn0.5Cd0.5S nanohexagon dendrite

Published online by Cambridge University Press:  25 November 2014

Wen Yu*
Affiliation:
Wenhua College, Wuhan 430074, P.R. China Department of Physics, Wuhan University, Wuhan 430072, P.R. China
Pengfei Fang
Affiliation:
Department of Physics, Wuhan University, Wuhan 430072, P.R. China
Shaojie Wang
Affiliation:
Department of Physics, Wuhan University, Wuhan 430072, P.R. China
*
Get access

Abstract

Hierarchical Zn0.5Cd0.5S nanohexagon dendrites were synthesized by a one-step hydrothermal method. The Zn0.5Cd0.5S nanohexagon dendrites were made up of nanohexagons with a side length of about 90 nm. The nanohexagons were regularly arranged forming as embranchments which were parallel to each other along certain hexagonal directions. Furthermore, these embranchments made up primary trunks shaping as dendrites. The growth mechanism of Zn0.5Cd0.5S nanohexagon dendrites was proposed in which molecular soft template and lowest energy principle played key roles. By adjusting the composition of the reactants, a series of ZnxCd1–xS solid solutions could be obtained. The morphology of the synthesized ZnxCd1–xS depended much on the x value. The UV-vis spectra absorb edges of the ZnxCd1–xS samples continuously shifted indicating the changes of the band gap.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S., Nature 354, 56 (1991)CrossRef
Moriarty, P., Rep. Prog. Phys. 64, 297 (2001)CrossRef
Pingarron, J., Yanez-Sedeno, P., Gonzalez-Cortes, A., Electrochim. Acta 53, 5848 (2008)CrossRef
Shulaker, M., Hills, G., Patil, N., Wei, H., Chen, H., Wong, H.-S.P., Mitra, S., Nature 501, 526 (2013)CrossRef
Whitesides, G.M., Grzybowski, B., Science 295, 2418 (2002)CrossRef
Chang, Y., Zeng, H., Cryst. Growth Des. 4, 273 (2004)CrossRef
Wang, C., Osada, M., Ebina, Y., Li, B., Akatsuka, K., Fukuda, K., Sugimoto, W., Ma, R., Sasaki, T., ACS Nano 8, 2658 (2014)CrossRef
Zhou, W., Wang, Z., Three-Dimensional Nanoarchitectures: Designing Next-Generation Devices (Springer-Verlag New York Inc., New York, 2011)CrossRefGoogle Scholar
Zhong, X., Feng, Y., Knoll, W., Han, M., J. Am. Chem. Soc. 125, 13559 (2003)CrossRef
Liu, Y., Zapien, J., Shan, Y., Geng, C., Lee, C., Lee, S., Adv. Mater. 17, 1372 (2005)CrossRef
Wada, Y., Niinobe, D., Kaneko, M., Tsukahara, Y., Chem. Lett. 35, 62 (2006)CrossRef
Li, Y., Ye, M., Yang, C., Li, X., Li, Y., Adv. Funct. Mater. 15, 433 (2005)CrossRef
Zhai, T., Gu, Z., Yang, W., Zhang, X., Huang, J., Zhao, Y., Yu, D., Fu, H., Ma, Y., Yao, J., Nanotechnology 17, 4644 (2006)CrossRef
Huang, J., Lianos, P., Langmuir 14, 4342 (1998)CrossRef
Deng, Z., Wang, C., Sun, X., Li, Y., Inorg. Chem. 41, 869 (2002)CrossRef
Li, Y., Sui, M., Ding, Y., Zhang, G., Zhuang, J., Wang, C., Adv. Mater. 12, 818 (2000)3.0.CO;2-L>CrossRef
Chen, X., Xu, H., Xu, N., Zhao, F., Lin, W., Lin, G., Fu, Y., Huang, Z., Wang, H., Wu, M., Inorg. Chem. 42, 3100 (2003)CrossRef
Cao, M., Liu, T., Gao, S., Sun, G., Wu, X., Hu, C., Wang, Z., Angew. Chem. Int. Ed. 44, 4197 (2005)CrossRef
Tosun, B.S., Pettit, C., Campbell, S.A., Aydil, E.S., ACS Appl. Mater. Int. 4, 3676 (2012)CrossRef