Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:29:46.041Z Has data issue: false hasContentIssue false

Surface temperature measurement of a copper anode submitted to a non-stationary electric arc in air

Contribution to the assessment of the power balance

Published online by Cambridge University Press:  14 November 2011

R. Landfried*
Affiliation:
Laboratoire de Génie Electrique de Paris, SUPELEC, CNRS, Universités Paris VI et Paris XI, Plateau du Moulon, 91192 Gif-sur-Yvette Cedex, France
T. Leblanc
Affiliation:
Laboratoire de Génie Electrique de Paris, SUPELEC, CNRS, Universités Paris VI et Paris XI, Plateau du Moulon, 91192 Gif-sur-Yvette Cedex, France
R. Andlauer
Affiliation:
Laboratoire de Génie Electrique de Paris, SUPELEC, CNRS, Universités Paris VI et Paris XI, Plateau du Moulon, 91192 Gif-sur-Yvette Cedex, France
Ph. Teste*
Affiliation:
Laboratoire de Génie Electrique de Paris, SUPELEC, CNRS, Universités Paris VI et Paris XI, Plateau du Moulon, 91192 Gif-sur-Yvette Cedex, France
Get access

Abstract

This work concerns the assessment of the surface temperature of copper anodes submitted to an electric arc in a non-stationary regime in air at atmospheric pressure. An infrared camera is used to measure the decrease of the surface temperature just after a very fast controlled arc extinction. Results are presented for different mean values of the arc current intensity (30, 70 and 130 A) with an electric arc duration in the range of 2–5 ms. The temperature decrease after the arc extinction allows an assessment of the surface temperature just at the moment of the arc switching off. In the present experimental conditions the mean temperatures reached for copper anodes are in the range of 750–1200 °C according to the arc current intensity values. Comparison between experimental results and a numerical modeling of the electrode heating allowed one to assess the surface power balance. The values for the volt equivalent are found about 12 V and the values for the surface power density are found to be near 2 × 109 W/m2.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haidar, J., Farmer, J.D., J. Phys. D: Appl. Phys. 26, 1224 (1993)CrossRef
Haidar, J., Farmer, J.D., J. Phys. D: Appl. Phys. 28, 2089 (1995)CrossRef
Zhou, X., Ding, B., Heberlein, J., in Proc. of 41th Holm Conf., Montreal, 1995, pp. 219231
Dabringhausen, L., Nandelstädt, D., Luhmann, J., Mentel, J., J. Phys. D: Appl. Phys. 35, 1621 (2002)CrossRef
Peters, J., Yin, F., Borges, C.F.M., Heberlein, J., Hackett, C., J. Phys. D: Appl. Phys. 38, 1781 (2005)CrossRef
Dullni, E., Gellert, B., Schade, E., IEEE Trans. Plasma Sci. 17, 644 (1989)CrossRef
Teste, Ph., Andlauer, R., Leblanc, T., IET Sci. Meas. Technol. 4, 156 (2010)CrossRef
Klonowski, T., Ph.D. thesis, University Paris XI, 2007
Zhu, Y., Mimura, K., Lim, J.-W., Isshiki, M., Jiang, Q., Metall. Mater. Trans. A 37A, 1231 (2006)
Salihou, H., Abbaoui, M., Lefort, A., Auby, R., J. Phys. D: Appl. Phys. 28, 1883 (1995)CrossRef
Devautour, J., Chabrerie, J.-P., Teste, Ph., J. Phys. III 3, 1157 (1993)
Marotta, A., Sharakhovsky, L.I., Borisyuk, V., J. Phys. D: Appl. Phys. 30, 2018 (1997)
Sanders, N.A., Pfender, E., J. Appl. Phys. 55, 714 (1984)CrossRef
Teste, Ph., Leblanc, T., Rossignol, J., Andlauer, R., Plasma Source. Sci. Technol. 17, 035001 (2008)CrossRef
Hunter, L.W., Kutler, J.R., J. Heat Transf. Trans. ASME 111, 239 (1989)CrossRef
He, Z.J., Haug, R., J. Phys. D: Appl. Phys. 26, 603 (1997)CrossRef
Gupta, R., Kumar, A., Comput. Meth. Appl. Mech. Eng. 56, 127 (1986)CrossRef
Morita, N., J. Appl. Phys. 56, 1987 (1984)CrossRef
Teste, Ph., Ph.D. thesis, University of Paris VI, 1994
Rieder, W., Z. Phys. 146, 629 (1956)CrossRef
Cobine, J.D., Burger, E.E., J. Appl. Phys. 26, 895 (1955)CrossRef