Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:08:29.621Z Has data issue: false hasContentIssue false

Surface evolution during low temperature plasma assisted nitriding of austenitic stainless steel

Published online by Cambridge University Press:  19 July 2008

M. Drouet*
Affiliation:
Laboratoire de Physique des Matériaux, UMR 6630, CNRS université de Poitiers, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
J. C. Stinville
Affiliation:
Laboratoire de Physique des Matériaux, UMR 6630, CNRS université de Poitiers, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France Laboratoire de Mécanique et de Physique des Matériaux, ENSMA, BP 40109, 86961 Futuroscope Chasseneuil Cedex, France
P. Villechaise
Affiliation:
Laboratoire de Mécanique et de Physique des Matériaux, ENSMA, BP 40109, 86961 Futuroscope Chasseneuil Cedex, France
J. P. Rivière
Affiliation:
Laboratoire de Physique des Matériaux, UMR 6630, CNRS université de Poitiers, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
C. Templier
Affiliation:
Laboratoire de Physique des Matériaux, UMR 6630, CNRS université de Poitiers, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
Get access

Abstract

Plasma-assisted nitriding is an attractive surface treatment for metallurgical surface modification to improve wear, hardness and fatigue resistance of austenitic stainless steels. However, this technique requires low temperature processing in order to avoid chromium nitride precipitation and hence the degradation of corrosion properties. This paper presents a low temperature high rate plasma nitriding process and will emphasis on the consequences of nitrogen incorporation on the metallographic and crystallographic properties of the sample surface.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Czerviec, T., Renevier, N., Michel, H., Surf. Coat. Technol. 131, 267 (2000) CrossRef
Mändl, S., Scholze, F., Neumann, H., Rauschenbarch, B., Surf. Coat. Technol. 174, 1191 (2003) CrossRef
L. Marot, Thesis, Université de Poitiers, 23 mai 2001
Perrière, J., Siejka, J., Rémili, N., Laurent, A., Straboni, A., Vuillermoz, B., J. Appl. Phys. 59, 2752 (1986) CrossRef
Marot, L., Le Bourhis, E., Straboni, A., Mater. Lett. 56, 76 (2002) CrossRef
Christiansen, T., Somers, M.A.J., Scripta Mater. 50, 35 (2004) CrossRef
Hoeft, D., Latella, B.A., Short, K.T., J. Phys. Condens. Mater. 17, 3547 (2005) CrossRef
Abrasonis, G., Rivière, J.P., Templier, C., Declemy, A., Muzard, S., Pranevicius, L., Surf. Coat. Technol. 196, 262 (2005) CrossRef
Abrasonis, G., Rivière, J.P., Templier, C., Declemy, A., Pranevicius, L., Milhet, X., J. Appl. Phys. 97, 083531 (2005) CrossRef
Garzon, C.M., Tschiptschin, A.P., Mater. Sci. Eng. A 441, 230 (2006) CrossRef
Lee, H., Oh, C.-S., Kim, S.-J., Takaki, S., Acta Mater. 55, 3649 (2007) CrossRef