Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T20:54:14.046Z Has data issue: false hasContentIssue false

Study of theoretical intersubband absorption in a multilevel superlattice as a function of temperature and doping

Published online by Cambridge University Press:  06 October 2010

H. Akabli
Affiliation:
Équipe d'Étude des Matériaux Optoélectroniques (E.E.M.O.) F.S.T.G., BP 549, Cadi Ayyad, University Marrakech, Marrakech, Morocco
A. Rajira
Affiliation:
Équipe Matériaux Procédés Environnement Qualité (E.M.P.E.Q.) ENSA, Route Sidi Bouzid, BP 63, Cadi Ayyad University, Safi, Morocco
A. Almaggoussi
Affiliation:
Équipe d'Étude des Matériaux Optoélectroniques (E.E.M.O.) F.S.T.G., BP 549, Cadi Ayyad, University Marrakech, Marrakech, Morocco
A. Abounadi*
Affiliation:
Équipe d'Étude des Matériaux Optoélectroniques (E.E.M.O.) F.S.T.G., BP 549, Cadi Ayyad, University Marrakech, Marrakech, Morocco
Get access

Abstract

The process of multiwavelengh detection by a single system is possible when considering multilevel structures. Indeed, in a quantum structure with specific profile, levels can be confined in a single band leading to Infrared intersubband transitions which may be responsible of strong enough absorption. In this work we present the theoretical determination of the absorption spectra in a specific GaAs/AlGaAs superlattice containing four confined minibands. For this, we have calculated the electronic states, the dipole matrix elements and the Fermi level's position versus temperature and doping. We analyze the importance of the different transitions absorption peaks and their behavior when varying either the temperature or the free electrons density, both in the parabolic and the non parabolic cases.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

H.C. Liu, F. Capasso (Eds.), Intersubband Transitions in Quantum Wells: Physics and Device Application I, Volume 62 of Semiconductors and semimetals (Academic Press, San Diego, 2000)
Sirtori, C., Kruck, P., Barbieri, S., Collot, P., Nagle, J., Appl. Phys. Lett. 73, 3486 (1998) CrossRef
Page, H., Becker, C., Robertson, A., Glastre, G., Ortiz, V., Sirtori, C., Appl. Phys. Lett. 78, 3529 (2001) CrossRef
Szerling, A., Karbownik, P., Kosiel, K., Kubacka-Traczyk, J., Pruszynska-Karbownik, E., Pluska, M., Bugajski, M., Acta Phys. Polonica 116, S45 (2009) CrossRef
Pierscinski, K., Pierscinska, D., Kosiel, K., Szerling, A., Bugajski, M., J. Electron. Mater. 39, 630 (2010) CrossRef
Groenert, M.E., Leitz, C.W., Pitera, A.J., Yang, V., Lee, H., Ram, R.J., Fitzgerald, E.A., J. Appl. Phys. 93, 362 (2003) CrossRef
Mei, T., Li, H., Karunasiri, G., Fan, W.J., Zhang, D.H., Yoon, S.F., Yuan, K.H., Infr. Phys. Technol. 50, 119 (2007) CrossRef
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (EDP Sciences, Paris, 1988), pp. 83–89
Nelson, D.F., Miller, R.C., Kleinman, D.A., Phys. Rev. B 35, 7770 (1987) CrossRef
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (EDP Sciences, Paris, 1988), pp. 241–246
Almaggoussi, A., Abounadi, A., Akabli, H., Zekentes, K., Androulaki, M., Eur. Phys. J. Appl. Phys. 45, 20301 (2009) CrossRef
J.P. Loehr, M.O. Manasreh, Semiconductor Quantum Wells and Superlattices for Long-Wavelengh Infrared detectors, edited by M.O. Manasreh (Artech House, Boston, London, 1993), pp. 37–41