Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T20:59:03.968Z Has data issue: false hasContentIssue false

The study of noble metal nanoparticles applied on third-order nonlinear optical nanocomposite materials

Published online by Cambridge University Press:  28 September 2011

Y.Y. Sun*
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
B.H. Yang
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China
G.Z. Guo
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China
H. Shi
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China
Y. Tian
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China
M.H. He
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China
J.C. Chen
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China
Y.Q. Liu
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China
G.Z. Zhao
Affiliation:
Research Center for Engineering Technology of Polymeric Composites of Shangxi, North University of China, Taiyuan 030051, P.R. China
Q.J. Zhang
Affiliation:
Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
*
Get access

Abstract

Recent theoretical progress in understanding the nonlinear optical response of noble metal nanocomposite materials with an enhanced third-order nonlinear susceptibility was reviewed. The enhanced third-order nonlinear susceptibility results from the surface plasmon resonance (SPR) of noble metal nanoparticles. And then the enhancement strongly depends on irradiation light wavelength, concentration and surrounding medium of noble metal particles. Furthermore, their applications as optical switchers with ultrashort time response and optical limiters of intense laser radiation were also reviewed. Moreover, the enhancement mechanism of third-order nonlinear susceptibility, and physical process was further discussed in detail, which was very important for further improvement of third-order nonlinear susceptibility and application on optical switchers and optical limiters for noble metal nanoparticles.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morino, S., Yamashita, T., Horie, K., Wada, T., Sasabe, H., React. Funct. Polym. 44, 183 (2000)CrossRef
Halvorson, C., Hagler, T.W., Moses, D., Cao, Y., Heeger, A.J., Synt. Met. 57, 3961 (1993)CrossRef
Hasegawa, T., Ishikawa, K., Kanetake, T., Koda, T., Takeda, K., Kobayashi, H., Kubodera, K., Chem. Phys. Lett. 171, 239 (1990)CrossRef
Li, N.J., Lu, J.M., Xia, X.W., Xu, Q.F., Wang, L.H., Dyes Pigm. 80, 73 (2009)CrossRef
Ghoshal, S.K., Chem. Phys. Lett. 158, 65 (1989)CrossRef
Margulis, Vl.A., Tomilin, O.B., Synt. Met. 79, 207 (1996)CrossRef
Samoc, M., Samoc, A., Davies, B.L., Synt. Met. 109, 79 (2000)CrossRef
Fischer, G.L., Boyd, R.W., Gehr, R.J., Jenekhe, S.A., Osaheni, J.A., Sipe, J.E., Weller-Brophy, L.A., Phys. Rev. Lett. 74, 1871 (1995)CrossRef
Fu, L., Resca, L., Phys. Rev. B 56, 10963 (1997)CrossRef
Li, N.J., Lu, J.M., Xia, X.W., Xu, Q.F., Wang, L.H., Polymer 50, 428 (2009)CrossRefPubMed
Zhang, Y.D., Wada, T., Sasabe, H., Wen, J., J. Fluorine Chem. 77, 83 (1996)CrossRef
Davies, B.L., Samoc, M., Curr. Opin. Solid State Mater. Sci. 2, 213 (1997)CrossRef
Xu, L., Wang, E.B., Li, Z., New J. Chem. 26, 782 (2002)CrossRef
Gao, L., Zhen, Y.L., J. Appl. Phys. 87, 1620 (2000)CrossRef
Olivares, J., Requejo-Isidro, J., del Coso, R., de Nalda, R., Solis, J., Afonso, C.N., J. Appl. Phys. 90, 1064 (2001)CrossRef
Ganeev, R.A., Ryasnyansky, A.I., Stepanov, A.L., Usmanov, T., Phys. Stat. Sol. (b) 241, 935 (2004)CrossRef
Ganeev, R.A., Ryasnyansky, A.I., Stepanov, A.L., Usmanov, T., Phys. Stat. Sol. (b) 238, R5 (2003)CrossRef
Chen, K.S., Gu, H.S., Cao, W.Q., Eur. Phys. J. Appl. Phys. 40, 65 (2007)CrossRef
Spatz, J., Roescher, A., Moeller, M., Adv. Mater. 8, 337 (1997)
Magruder, R., Yang, L., Haglund, R., White, C., Yang, L., Dorsinville, R., Alfano, R., Appl. Phys. Lett. 62, 1730 (1993)CrossRef
Derek, P., Jason, L., Matthew, M., Yu, X., Rigoberto, A., Chem. Mater. 16, 5063 (2004)
Schrof, W., Rozouvan, S., Keuren, E.V., Adv. Mater. 3, 4 (1998)
Karthikeyan, B., Anija, M., Philip, R.J., Appl. Phys. Lett. 88, 3104 (2006)
Sun, Y.Y., Liu, Y.Q., Zhao, G.Z., Zhou, X., Zhang, Q.J., Deng, Y., Mater. Chem. Phys. 111, 301 (2008)CrossRef
Wang, Y., Xie, X.B., Nano Lett. 5, 2379 (2005)CrossRef
Chen, X., Tao, J., Zou, G., Appl. Phys. A: Mater. Sci. Process. 100, 223 (2010)CrossRef
Zeng, R., Wang, S.F., Liang, H.C., Polym. Polym. Compos. 10, 291 (2002)
Zhou, H.S., Wada, T., Sasabe, H., Synt. Met. 81, 129 (1996)CrossRef
Gonsalves, K.E., Carlson, G., Kumar, J., Nanotechnology-Molecularly Designed Materials, vol. 622 (ACS, Washington, DC, 1996), p. 151CrossRefGoogle Scholar
Yang, G., Guan, D.Y., Wang, W.T., Wu, W.D., Chen, Z.H., Opt. Mater. 25, 439 (2004)CrossRef
Barrera, G., Monsivais, G., Mochan, W.L., M. Del Castillo, Phys. A: Stat. Mech. Appl. 157, 369 (1989)
Unnikrishnan, K.P., Nampoori, V.P.N., Ramakrishnan, V., Umadevi, M., Vallabhan, C.P.G., J. Phys. D: Appl. Phys. 36, 1242 (2003)CrossRef
Pincon, N., Palpant, B., Prot, D., Charron, E., Debrus, S., Eur. Phys. J. D 19, 395 (2002)CrossRef
Ma, H.R., Sheng, P., Wong, G.K.L., Topics Appl. Phys. 82, 41 (2002)CrossRef
Sun, Y.Y., Guo, G.Z., Liu, Y.Q., Zhao, G.Z., Zhang, Q.J., Curr. Nanosci. 6, 103 (2010)CrossRef
Liao, H.B., Xiao, R.F., Wang, H., Wong, K.S., Wong, G.K.L., Appl. Phys. Lett. 72, 1817 (1998)CrossRef
Maxein, G., Keller, H., Novak, B.M., Zentel, R., Adv. Mater. 3, 338 (1998)
Lamarre, J.-M., Billard, F., Kerboua, C.H., Lequime, M., Roorda, S., Martinu, L., Opt. Commun. 281, 331 (2008)CrossRef
Andersson, M., Alfredsson, V., Kjellin, P., Palmqvist, A.E.C., Nano Lett. 2, 1403 (2002)CrossRef
Deng, Y., Sun, Y.Y., Wang, P., Zhang, D.G., Jiao, X.J., Ming, H., Zhang, Q.J., Jiao, Y., Sun, X.Q., Curr. Appl. Phys. 8, 13 (2008)CrossRef
Tutt, L.W., Boggess, T.F., Prog. Quant. Electron. 17, 299 (1993)CrossRef
Papadimitriou, G.I., Papazoglou, C., Pomportsis, A.S., J. Light Wave Technol. 21, 384 (2003)CrossRef
Wu, B., in NFOEC Tech. Proc., Baltimore, MD, USA, 2001, pp. 255261
Chaires, D., All-optical switching, in NFOEC Tech. Proc., Dallas, TX, USA, 2002, pp. 18681871
Chen, S.H., Chen, H.M.P., Geng, Y., Jacobs, S.D., Marshall, K.L., Blanton, T.N., Adv. Mater. 15, 1061 (2003)CrossRef
Dawes, A.M.C., Illing, L., Clark, S.M., Gauthier, D.J., Science 308, 672 (2005)CrossRef
Erlacher, A., Miller, H., Ullrich, B., J. Appl. Phys. 95, 2927 (2004)CrossRef