Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:17:47.823Z Has data issue: false hasContentIssue false

Study of metal-ferrite composites: complementary use of 57Fe Mössbauer spectrometry, X-ray diffraction and TG analysis

Published online by Cambridge University Press:  15 April 2002

N. Viart*
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, Groupe des Matériaux Inorganiques (UMR 7504), 23 rue du Loess, 67037 Strasbourg Cedex, France
G. Pourroy
Affiliation:
Institut de Physique et Chimie des Matériaux de Strasbourg, Groupe des Matériaux Inorganiques (UMR 7504), 23 rue du Loess, 67037 Strasbourg Cedex, France
J.-M. Greneche
Affiliation:
Laboratoire de Physique de l'État Condensé (UMR 6087), Université du Maine, avenue O. Messiaen, BP 535, 72085 Le Mans Cedex 9, France
Get access

Abstract

The complementarity between 57Fe Mössbauer spectrometry and classical methods of powder characterizations is pointed out for determining the formula of metal-ferrite composites (Fe$_p^0$Co$_{1-p}^0$)a(CoxFe$_{3-x-t}$$\square_t$O4). It is shown that X-ray diffraction is essential to determine the composition of the metal, while TG measurements in air give an approximate value for the metal ratio. In-field spectrometry is expected as the most suitable tool to determine the Fe sites occupancy, although the complex hyperfine structure might originate some misfits. The composites formulae were therefore determined by selecting the set of refined Mössbauer parameters that were in best agreement with the TG measurements. Magnetic measurements prove the validity of such an approach.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carles, V., Laurent, C., Brieu, M., Rousset, A., J. Mater. Chem. 9, 1003-9 (1999). CrossRef
Hwang, H.J., Toriyama, M., Sekino, T., Niihara, K., J. Eur. Ceram. Soc. 18, 2193-9 (1999). CrossRef
Na, J.G., Kim, C.S., IEEE Trans. Magn. 32, 3611 (1996). CrossRef
Pourroy, G., J. Alloys Compounds 278, 264 (1998). CrossRef
Läkamp, S., Pourroy, G., Eur. J. Solid State Inorg. Chem. 34, 295 (1997).
Yamegni-Noubeto, J.C., Bouakham, T., Pourroy, G., Werckmann, J., Ehret, G., J. Solid State Chem. 135, 210 (1998). CrossRef
Pourroy, G., Läkamp, S., Vilminot, S., J. Alloys Compounds 244, 90 (1996). CrossRef
Yamegni-Noubeyo, J.C., Pourroy, G., Werckmann, J., Malats, A. i Riera, G. Ehret, P. Poix, J. Am. Ceram. Soc. 79, 2027 (1996). CrossRef
Pourroy, G., Viart, N., Läkamp, S., J. Magn. Magn. Mater. 203, 37 (1999). CrossRef
Tihay, F., Pourroy, G., Richard-Plouet, M., Roger, A.C., Kiennemann, A., Appl. Catal. A: General 206, 29 (2001). CrossRef
Viart, N., Pourroy, G., Grenèche, J.-M., Niznansky, D., Hommet, J., Eur. Phys. J. AP 12, 37 (2000). CrossRef
Dormann, J.L., Malats, A. i Riera, G. Pourroy, P. Poix, J. Jove, P. Renaudin, Hyperfine Inter. 94, 1995-8 (1994). CrossRef
W.B. Pearson, Handbook of Lattice Spacings and Structures of Metals (Pergamon, 1964), p. 505.
Jay, J.P., Jurca, I.-S., Pourroy, G., Viart, N., Mény, C., Panissod, P., Solid State Sci. 3, 301 (2001). CrossRef
Malats, A. i Riera, G. Pourroy, P. Poix, J. Solid State Chem. 108, 362-5 (1994). CrossRef
Teillet, J., Bouree, F., Krishnan, R., J. Magn. Magn. Mater. 123, 93 (1993). CrossRef
Sawatsky, G.A., Van Der Woude, F., Morrish, H., Phys. Rev. 187, 747 (1969). CrossRef
Elbadraoui, E., Baudour, J.L., Bouree, F., Tailhades, Ph., Rousset, A., J. Phys. IV France 7, C1-525 (1997). CrossRef
Weiss, P., Forrer, R., Ann. Phys. 12, 279 (1929). CrossRef