Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T02:03:00.643Z Has data issue: false hasContentIssue false

Study of finite periodic structures using the generalized Mie theory

Published online by Cambridge University Press:  13 June 2007

L. Oyhenart*
Affiliation:
Laboratoire de Physique des Interactions Ondes-Matière (PIOM), UMR CNRS 5501, 16 avenue Pey-Berland, 33607 Pessac, France Institut de recherche XLIM, UMR CNRS 6172, 123 avenue Albert Thomas, 87060 Limoges, France
V. Vignéras
Affiliation:
Laboratoire de Physique des Interactions Ondes-Matière (PIOM), UMR CNRS 5501, 16 avenue Pey-Berland, 33607 Pessac, France
Get access

Abstract

The generalized Mie theory, also known as themultiple-scattering theory, is an analytical method for solving the scattered field by a collection of spherical scatterers. This is the fastest, most reliable method when the wavelength is close to the structure's dimensions. It is applicable to frequency selective surfaces and is the onlymethod for analyzing finite photonic crystals with a large size. We used simplified structures to compare this method with other techniques.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Purcell, E.M., Pennypacker, C.R., Astrophys. J. 186, 705 (1973) CrossRef
Waterman, P.C., Proc. IEEE 53, 805 (1965) CrossRef
Yee, K.S., IEEE Trans. Ant. Propagat. 14, 302 (1966)
A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)
O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, 6th edn. (Butterworth-Heinemann, 2005)
J. Jin, The Finite Element Method in Electromagnetics, 2nd edn. (Wiley & Sons, New York, 2002)
Mittra, R., IEEE Ant. Prop. Mag. 46, 18 (2004) CrossRef
Liang, C., Lo, Y.T., Radio Sci. 2, 1481 (1967) CrossRef
Defos du, M. Rau, F. Pessan, G. Ruffie, V. Vigneras-Lefebvre, J.P. Parneix, Eur. Phys. J. Appl. Phys. 1, 45 (1998) CrossRef
Xu, Y.L., Wang, R.T., Phys. Rev. E 58, 3931 (1998) CrossRef
Mie, G., Ann. D. Phys. 25, 377 (1908) CrossRef
L. Tsang, J.A. Kong, K.-H. Ding, C.O. Ao, Scattering of Electromagnetic Waves, 1st edn. (Wiley, New York, 2001), Vol. II, p. 533
T.K. Wu, Frequency Selective Surface and Grid Array, 1st edn. (Wiley-Interscience, New York, 1995)
B.A. Munk, Frequency Selective Surfaces: Theory and Design, 1st edn. (Wiley-Interscience, New York, 2000)
Berger, V., Current Opin. Solid State & Mat. Sci. 4, 209 (1999) CrossRef
J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic crystals, 1st edn. (Princeton University Press, 1995)
J.A. Stratton, Théorie de l'électromagnétisme, 1st edn. (Dunod, Paris, 1961)
H.C. van de Hulst, Light Scattering by Small Particles, 1st edn. (Dover, New York, 1981)
C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, 1st edn. (Wiley, New York, 1983)
J.D. Jackson, Electrodynamique classique, 1st edn. (Dunod, Paris, 2001)
Wiscombe, W.J., Appl. Opt. 19, 1505 (1980) CrossRef
R.F. Harrington, Time-Harmonic Electromagnetic Fields, 2nd rev. edn. (Wiley-IEEE Press, New, 2001)
Wang, X., Zhang, X.-G., Yu, Q., Harmon, B.N., Phys. Rev. B 47, 4161 (1993) CrossRef
Mackowski, D.W., Proc. R. Soc. London Ser. A 433, 599 (1991) CrossRef