Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T20:37:49.565Z Has data issue: false hasContentIssue false

Studies on the axial shift and the spin Hamiltonian parameters for Cr+ in BeO

Published online by Cambridge University Press:  20 March 2013

Bo-Tao Song*
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Shao-Yi Wu
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China
Min-Quan Kuang
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Zhi-Hong Zhang
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
*
Get access

Abstract

The axial shift and the spin Hamiltonian parameters (zero-field splitting D, g factors and hyperfine structure constants) for Cr+ in BeO are theoretically studied in this work. The calculations are carried out by using the perturbation formulas of these parameters for a 3d5 ion under trigonally distorted tetrahedra based on the cluster approach containing both the crystal-field and charge transfer contributions. It is found that the impurity Cr+ may not occupy exactly the host Be2+ site but experience a small outward shift 0.01 Å away from the ligand triangle along the C3 axis. The above impurity axial shift leads to much smaller trigonal distortion than the host Be2+ site in BeO. The theoretical spin Hamiltonian parameters based on the above impurity axial shift are in good agreement with the observed values.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kiiko, V.S., Dmitriev, I.A., Makurin, Yu.N., Sofronov, A.A., Ivanovskii, A.L., Glass Ceram. 58, 26 (2001)
Kirm, M., Feldbach, E., Kink, R., Lushchik, A., Lushchik, Ch., Maaroos, A., Martinson, I., J. Electron Spectros. Relat. Phenom. 79, 91 (1996)CrossRef
Song, H.F., Liu, H.F., Tian, E., J. Phys.: Condens. Matter 19, 456209 (2007)
Vidal-Valat, G., Vidal, J.P., Kurki-Suonio, K., Kurki-Suonio, R., Acta Crystall. A 43, 540 (1987)CrossRef
Noel, Y., Llunell, M., Orlando, R., D’Arco, P., Dovesi, R., Phys. Rev. B 66, 214107 (2002)CrossRef
He, J., Wu, K., Sa, R., Li, Q., Wei, Y., Appl. Phys. Lett. 97, 051901 (2010)CrossRef
Shein, I.R., Kiĭko, V.S., Makurin, Y.N., Gorbunova, M.A., Ivanovskiĭ, A.L., Phys. Solid State 49, 1067 (2007)CrossRef
Abragam, A., Bleaney, B., Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, 1970)Google Scholar
Sugano, S., Tanabe, Y., Kamimura, H., Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York, 1970)Google Scholar
Milsch, B., Kerbe, F., Miehalowsky, L., Ceram. Int. 16, 311 (1990)CrossRef
Sharma, R.R., Thosar, B.V., Lyenga, P.K., Advances in Mossbauer Spectroscopy (Elsevier Science, Amsterdam, 1983)Google Scholar
Yu, W.L., Zhao, M.G., Phys. Rev. B 37, 9254 (1988)
Lever, A.B.P., Inorganic Electronic Spectroscopy (Elsevier Science, Amsterdam, 1984)Google Scholar
Dong, H.N., Wu, X.X., Wu, S.Y., Zheng, W.C., Acta Phys. Sin. 51, 616 (2002)
Wu, S.Y., Yan, W.Z., Gao, X.Y., Spectrochim. Acta A 60, 701 (2004)CrossRef
Wei, L.H., Wu, S.Y., Zhang, Z.H., Wang, H., Wang, H., X.F. Wang. Mod. Phys. Lett. B. 22, 1739 (2008)CrossRef
Wyckoff, R.W.G., Crystal Structure (Interscience Press, New York, 1965)Google Scholar
Newman, D.J., Ng, B., Rep. Prog. Phys. 52, 699 (1989)CrossRef
Edgar, A., J. Phys. C 9, 4303 (1976)CrossRef
Yang, Z.Y., J. Phys.: Condens. Matter 12, 4091 (2000)
Dong, H.N., Wang, J., Sun, L., Li, D.F., Liu, J., J. Chongqing Univ. Posts Telecommun. 19, 762 (2007)
Dong, H.N., Dong, M.R., Li, J.J., Li, Q.C., Hong, X., J. Chongqing Univ. Posts Telecommun. 24, 208 (2012)
Chakravarty, A.S., Introduction to the Magnetic Properties of Solids (Wiley-Interscience Publication, New York, 1980)Google Scholar
Clementi, E., Raimondi, D.L., J. Chem. Phys. 38, 2686 (1963)CrossRef
Clementi, E., Raimondi, D.L., Reinhardt, W.P., J. Chem. Phys. 47, 1300 (1967)CrossRef
Griffith, J.S., The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964)Google Scholar
Hodgson, E.K., Fridovich, I., Biochem. Biophys. Res. Commun. 54, 270 (1973)CrossRef
McGarvey, B.R., J. Phys. Chem. 71, 51 (1967)CrossRef
Zhao, M.G., Xu, J.A., Bai, G.R., Xie, H.S., Phys. Rev. B 27, 1516 (1983)
Watanabe, H., J. Phys. Chem. Solids 28, 961 (1967)CrossRef
Weast, R.C., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1989)Google Scholar