Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:35:06.810Z Has data issue: false hasContentIssue false

Structural stability and electronic properties of M2TaN3, ε-TaN and MTa2N3 (M = Ti, Zr, Hf) compounds

Published online by Cambridge University Press:  11 August 2011

T. Chihi*
Affiliation:
Laboratory for Elaboration of New Materials and Characterization (LENMC), Ferhat Abbas University of Setif, Setif 19000, Algeria
M. Fatmi*
Affiliation:
Research Unit on Emerging Materials (RUEM), Ferhat Abbas University of Setif, Setif 19000, Algeria
J.C. Parlebas
Affiliation:
IPCMS, UMR 7504 CNRS-UDS, 23 Rue de Loess, 67034 Strasbourg Cedex 2, France
M. Guemmaz
Affiliation:
DAC Laboratory, Faculty of Sciences, Ferhat Abbas University of Setif, Setif 19000, Algeria
Get access

Abstract

Using a Plane-Wave Pseudo-Potential (PWPP) method, total energy and band structure calculations for M2TaN3, ε-TaN and MTa2N3 (M = a transition metal, TM) compounds have been performed in order to understand their structural stability and electronic properties. To do that, we first focus on ε-TaN compounds. The exchange correlation is treated using the Generalized Gradient Approximation (GGA). The Virtual Crystal Approximation (VCA) is then used to examine the structural stability when substituting Ti, Zr or Hf to a Ta atom either in a cell corner [c(M)(Ta2N3)] or inside the cell [in(M2)(TaN3)]. Actually, substitution of Ta by a Ti, Zr or Hf atom at a corner site does slightly change the corresponding lattice constant. Also we calculate ground-state quantities such as elastic constants, shear moduli, Young’s modulus and bulk modulus as well as Poisson’s ratio. The corresponding results for band structures and densities of states are shown as well. As far as we know our work is a pioneer attempt to determine elastic, mechanic and electronic properties for M2TaN3 and MTa2N3 (M = TM) compounds.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zerr, A., Riedel, R., Sekine, T., Lowther, J.E., Ching, W.Y., Tanaka, I., Adv. Mater. 18, 2933 (2006)CrossRef
Horvath-Bordon, E., Riedel, R., Zerr, A., McMillan, P.F., Auffermann, G., Prots, Y., Bronger, W., Kniep, R., Kroll, P., Chem. Soc. Rev. 35, 987 (2006)CrossRef
Toth, L.E., Transition Metal Carbides and Nitrides (Academic Press, New York, London, 1971)Google Scholar
Larsson, N., Hollman, P., Hendequist, P., Hogmark, S., Wahlstorm, U., Hultman, L., Surf. Coat. Technol. 86–87, 351 (1996)CrossRef
Andrievski, R.A., Anisimova, I.A., Anisimov, V.P., Thin Solid Films 205, 171 (1991)CrossRef
Oyama, S.T., The Chemistry of Transition Metal Carbides and Nitrides (Blackie, London, 1996)CrossRefGoogle Scholar
Hotovy, I., Buc, D., Breka, J., Srnanek, R., Phys. Stat. Sol. 161, 97 (1997)3.0.CO;2-O>CrossRef
Geballe, T.H., Matthias, B.T., Remeika, J.P., Glogsto, A.M., Compton, V.B., Maita, J.P, Williams, H.J., Physics 2, 293 (1966)
Ma, J., Du, Y., Qian, Y., J. Alloys Compd. 389, 296 (2005)CrossRef
Papaconstantopoulos, D.A., Pickett, W.E., Klein, B.M., Boyer, L.L., Phys. Rev. B 31, 752 (1985)CrossRef
Stampfl, C., Mannstadt, W., Asahi, R., Freeman, A.J., Phy. Rev. B 63, 155106 (2001)CrossRef
Nagao, S., Nordlund, K., Nowak, R., Phys. Rev. B 73, 144113 (2006)CrossRef
Chen, X.J., et al., Appl. Phys. Sci. 102, 3198 (2005)
Ojha, P., Aynyas, M., Sanyal, S.P., J. Phys. Chem. Sol. 68, 148 (2007)CrossRef
Joelsson, T., Hultman, L., Appl. Phys. Lett. 86, 131922 (2005)CrossRef
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Haspin, P.J., Clark, S.J., Payne, M.C., J. Phys. Cond. Mat. 14, 2717 (2002)CrossRef
Hohenberg, P., Kohn, W., Phys. Rev. 136, B864 (1964)CrossRef
Kohn, W., Sham, L.J., Phys. Rev. 140, A1133 (1965)CrossRef
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976)CrossRef
Schonberg, N., Acta Chem. Scand. 8, 199 (1954)CrossRef
Christensen, A.N., Lebech, B., Acta Crystallogr. B 34, 261 (1978)CrossRef
Kim, T.-E., Han, S., Son, W.-J., Cho, E., Ahn, H.-S., Shin, S., Comput. Mater. Sci. 44, 577 (2008)CrossRef
Mehl, M.J., Barry, B.M., Papaconstantopoulos, D.A., Intermetallic Compounds, Principle and Practice (John Wiley and Sons, London, 1995)Google Scholar
Hu, Q.K., Wu, Q.H., Ma, Y.M., Zhang, L.J., Liu, Z.Y., He, J.L., Sun, H., Wang, H.T., Tian, Y.J., Phys. Rev. B 73, 214116 (2006)CrossRef
Cline, C.F., Dunegan, H.L., Henderson, G.W., J. Appl. Phys. 38, 1944 (1967)CrossRef
Pugh, S.F., Philos. Mag. 45, 823 (1954)CrossRef
Haines, J., leger, J.M., Bocquillon, G., Ann. Rev. Mater. Res. 31, 1 (2001)CrossRef
Sumer, A., Smith, J.F., J. Appl. Phys. 33, 2283 (1962)CrossRef