Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T18:20:04.720Z Has data issue: false hasContentIssue false

Stochastic convective transport in presence of fragmented dendrites in a solidifying binary melt

Published online by Cambridge University Press:  21 September 2007

S. Ganguly
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India
S. Chakraborty*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India
Get access

Abstract

A comprehensive integrated model of stochastic convective transport in a solidifying binary melt is presented in this work. The detailed transport phenomena in the particle and bulk phases are coupled together through a stochastic Eulerian-Lagrangian formalism, capturing the physical mechanisms and consequences of particle agglomeration, de-agglomeration, and the underlying hydrodynamic interactions. The interactions between random thermo-fluidic fluctuations in the continuum carrier phase and the associated growth/dissolution of particle phases are modeled by employing a Langevin formalism. Representative case studies highlighting the implications of the dynamics of the fragmented dendrites on the overall convective patterns in an electromagnetically-stirred semi-solid binary melt are subsequently presented, so as to emphasize on the comprehensive physical bases and to illustrate the fundamental approach of the present predictive methodology.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Young, G.W., Davis, S.H., Phys. Rev. B 34, 3388 (1986) CrossRef
Turner, J., Huppert, H.E., Sparks, R., J. Petrol. 27, 397 (1986) CrossRef
Thompson, M.E., Szekely, Y.J., J. Fluid Mech. 187, 409 (1988) CrossRef
Huppert, H.E., J. Fluid Mech. 212, 209 (1990) CrossRef
Li, Q., Beckermann, C., Phys. Rev. E 57, 3176 (1998) CrossRef
Kumar, P., Chakraborty, S., Srinivasan, K., Dutta, P., Metall. Mater. Trans. B 34, 899 (2003) CrossRef
Tsiveriotis, K., Brown, R.A., Phys. Rev. B 48, 13495 (1993) CrossRef
M.C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974)
Flemings, M.C., Metall. Trans. A 22, 957 (1991) CrossRef
Batchelor, G.K., J. Fluid Mech. 52, 245 (1972) CrossRef
Sasikumar, R., Kumar, M., Acta Metall. Mater. 39, 2503 (1991) CrossRef
Hadji, L., Phys. Rev. E 65, 022201 (2002) CrossRef
Chakraborty, S., Kumar, A., Phys. Rev. Lett. 95, 024504 (2005) CrossRef
Bennon, W.D., Incropera, F.P., Int. J. Heat Mass Transfer 30, 2161 (1987) CrossRef
D. Gidaspow, Appl. Mech. Rev.39, 1 (1986)
Happel, J., AIChE. J. 4, 197 (1958) CrossRef
Karma, A., Phys. Rev. Lett. 70, 3439 (1993) CrossRef
Han, Q., Hunt, J.D., J. Crystal Growth 140, 398 (1994) CrossRef
Maxey, M.R., Riley, J.J., Phys. Fluids 26, 883 (1983) CrossRef
Bafaluy, J., Senger, B., Voegel, J.C., Schaaf, P., Phys. Rev. Lett. 70, 623 (1993) CrossRef
Wojtaszczyk, P., Avalos, J.B., Phys. Rev. Lett. 80, 754 (1998) CrossRef
Yamakawa, H., J. Chem. Phys. 53, 436 (1970) CrossRef
Hur, J.S., Shaqfeh, E.S.G., Larson, R.G., J. Rheol. 44, 713 (2000) CrossRef
Jendrejack, R.M., Schwartz, D.C., Pablo, J.J.de, Graham, M.D., J. Chem. Phys. 120, 2513 (2004) CrossRef
Koke, J., Modigell, M., J. Non-Newtonian Fluid. Mech. 112, 141 (2003) CrossRef
Petera, J., Kotynia, M., Int. J. Heat Mass Transfer 47, 1483 (2004) CrossRef
Gautham, B.P., Kapur, P.C., Mater. Sci. Eng. 393, 223 (2005) CrossRef
Higashitani, K., Ogawa, R., Hosokawa, G., Matsuno, Y., J. Chem. Eng. Jap. 15, 299 (1982) CrossRef
Van Dongen, P.G.J., Ernst, M.H., J. Stat. Phys. 37, 301 (1984) CrossRef
M. Elimelech, J. Gregory, X. Jia, R.A. Williams, Particle Deposition and Aggregation, Measurement, Modelling and Simulation (Butterworth-Heinemann, Woburn, 1995)
N.A. Fuchs, The Mechanics of Aerosols (Pergamon, New York, 1964)
Klett, J.D., Davis, M.H., J. Atmos. Sci. 30, 107 (1973) 2.0.CO;2>CrossRef
Kusters, K.A., Wijers, J.G., Thoenes, D., Chem. Eng. Sci. 52, 107 (1997) CrossRef
Selomulya, C., Bushell, G., Amal, R., Waite, T.D., Chem. Eng. Sci. 58, 327 (2003) CrossRef
Pandya, J.D., Spielman, L.A., Chem. Eng. Sci. 38, 1983 (1983) CrossRef
J.C. Flesch, P.T. Spicer, S.E. Pratsinis, AIChE. J. 45, 1114 (1999)
Meakin, P., Phys. Rev. A 27, 1495 (1983) CrossRef
Mandelbrot, B.B., Passoja, D.E., Paullay, A.J., Nature 308, 721 (1984) CrossRef
Li, J. M., Lu, L., Su, Y., Lai, M.O., J. Appl. Phys. 86, 2526 (1999) CrossRef
K.J. Falconer, The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1986)
Einstein, A., Ann. Phys. 19, 289 (1906) CrossRef
P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, Berlin, 1999)
S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington, DC, 1980)
Swaminathan, C.R., Voller, V.R., Int. J. Heat Mass Transfer 40, 2859 (1997) CrossRef
Voller, V.R., Int. J. Heat Mass Transfer 40, 2869 (1997) CrossRef
Kirkwood, D.H., Int. Mater. Rev. 39, 173 (1994) CrossRef
Spencer, D.B., Mehrabian, R., Flemings, M.C., Metall. Trans. 3, 1925 (1972) CrossRef
Y. Ito, M.C. Flemings, J.A.Cornie, in Nature and properties of semisolid Materials, edited by J.A. Sekhar, J.A. Dantzig (TMS, Warrendale, PA, 1991), p. 3