Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T06:36:13.546Z Has data issue: false hasContentIssue false

Stability, size and optical properties of colloidal silver nanoparticles prepared by electrical arc discharge in water

Published online by Cambridge University Press:  04 July 2009

A. A. Ashkarran
Affiliation:
Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Azadi Ave., P.O. Box 11155-8639, Tehran, Iran
A. Iraji zad*
Affiliation:
Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Azadi Ave., P.O. Box 11155-8639, Tehran, Iran Physics department, Sharif University of Technology, Azadi Ave., P.O. Box 11155-8639, Tehran, Iran
M. M. Ahadian
Affiliation:
Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Azadi Ave., P.O. Box 11155-8639, Tehran, Iran
M. R. Hormozi Nezhad
Affiliation:
Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Azadi Ave., P.O. Box 11155-8639, Tehran, Iran Chemistry department, Faculty of Sciences, Persian Gulf University, P.O. Box 75169, Boushehr, Iran
Get access

Abstract

We have fabricated and characterised colloidal silver nanoparticles by the electrical arc discharge method in DI water. Size and optical properties of the silver nanoparticles were studied versus different arc currents. Optical absorption indicates a plasmonic peak at 392 nm for 10 A which increases to 398 nm for 20 A arc current. This reveals that by raising the arc current the size of the nanoparticles increases. Optical absorption of silver nanoparticles after 3 weeks shows precipitation of them in a water medium. The effect of different surfactant and stabilizer concentrations such as cethyl trimethylammonium bromide (CTAB), polyvinyl pyrrolidone (PVP), sodium citrate, sodium dodecyl sulfate (SDS), sodium di-2-ethylsulfosuccinate (AOT) and carboxymethyl cellulose (CMC) on the stability of silver nanoparticles was investigated. The colloidal silver nanoparticles with 100 μM concentration were stable for more than 3 months at 50 μM CTAB and 6 months at 10 μM sodium citrate concentration, respectively. SEM images of the sample prepared at 50 μM CTAB concentration reveal uniform and fine nanoparticles. The mean size from TEM images is about 14 nm. TEM images of the sample prepared at 10 μM sodium citrate concentration show a shell of citrate that covers the silver nanoparticles.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sun, Y.G., Xia, Y.N., Science 298, 2176 (2002) CrossRef
Daniel, M.C., Astruc, D., Chem. Rev. 104, 293 (2004) CrossRef
Xu, Z.P., Zeng, Q.H., Lu, G.Q., Yu, A.B., Chem. Eng. Sci. 61, 1027 (2006) CrossRef
Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A.G., Atwater, H.A., Adv. Mater. 13, 1501 (2001) 3.0.CO;2-Z>CrossRef
Li, Y.N., Wu, Y.L., Ong, B.S., J. Am. Chem. Soc. 127, 3266 (2005) CrossRef
Kamat, P.V., J. Phys. Chem. B 106, 7729 (2002) CrossRef
El-Sayed, M.A., Acc. Chem. Res. 34, 257 (2001) CrossRef
Sun, S.H., Murray, C.B., Weller, D., Folks, L., Moser, A., Science 287, 1989 (2000) CrossRef
Murray, C.B., Sun, S.H., Doyle, H., Betley, T., MRS Bull. 26, 985 (2001) CrossRef
Lam, D.M.K., Rossiter, B.W., Sci. Am. 265, 48 (1991)
West, J.L., Halas, N.J., Annu. Rev. Biomed. Eng. 5, 285 (2003) CrossRef
Nicewarner-Pena, S.R., Freeman, R.G., Reiss, B.D., He, L., Pena, D.J., Walton, I.D., Cromer, R., Keating, C.D., Natan, M.J., Science 294, 137 (2001) CrossRef
Courrol, L.C., Rodrigues de, F. Silva, O., Gomes, L., Coll. Surf. A 305, 54 (2007) CrossRef
Mafune, F., Kohno, Y.J., Takeda, Y., Kondow, T., J. Phys. Chem. B 104, 8333 (2000) CrossRef
Henglein, A., Chem. Mater. 10, 444 (1998) CrossRef
Zhu, J., Liu, S., Palchik, O., Koltypin, Y., Gedanken, A., Langmuir 16, 6396 (2000) CrossRef
Yu, Y.Y., Chang, S.S., Lee, C.L., Wang, C.R.C., J. Phys. Chem. B 101, 6661 (1997) CrossRef
Reetz, M.T., Helbig, W., J. Am. Chem. Soc. 116, 1401 (1994)
Pastoriza-Santos, I., Liz-Marzan, L.M., Langmuir 15, 948 (1999) CrossRef
Wang, H., Qiao, X., Chen, J., Ding, S., Coll. Surf. A 256, 111 (2005) CrossRef
Nickel, U., Castell, A.Z., Poppl, K., Schneider, S., Langmuir 16, 9087 (2000) CrossRef
Leopold, N., Lendl, B., J. Phys. Chem. B 107, 5723 (2003) CrossRef
Kvitek, L., Prucek, R., Panacek, A., Novtny, R., Hrbac, J., Zboril, R., J. Mater. Chem. 15, 1099 (2005) CrossRef
Saito, Y., Wang, J.J., Batchelder, D.N., Smith, D.A., Langmuir 19, 6857 (2003) CrossRef
Tsuji, M., Nishizawa, Y., Matsumoto, K., Miyamae, N., Tsuji, T., Zhanga, X., Colloids Surf. A 293, 185 (2007) CrossRef
Nagata, Y., Watananabe, Y., Fujita, S., Dohmaru, T., Taniguchi, S., J. Chem. Soc. Chem. Commun. 21, 1620 (1992) CrossRef
Temgire, M.K., Joshi, S.S., Radiat. Phys. Chem. 71, 1039 (2004) CrossRef
Wu, W.T., Wang, Y., Shi, L., Zhu, Q., Pang, W., Xu, G., Lu, F., Nanotechnology 16, 3017 (2005) CrossRef
Kumar, M., Varshney, L., Francis, S., Radiat. Phys. Chem. 73, 21 (2005) CrossRef
Henglein, A., Langmuir 17, 2329 (2001) CrossRef
Xu, X., Yin, Y., Ge, X., Wu, H., Zhang, Z., Mater. Lett. 37, 354 (1998) CrossRef
Stepanov, A.L., Hole, D.E., Townsend, P.D., J. Non-Cryst. Solids 260, 65 (1999) CrossRef
Balasubramanian, C., Godbole, V.P., Rohatgi, V.K., Das, A.K., Bhoraskar, S.V., Nanotechnology 15, 370 (2004) CrossRef
Ishigami, M., Cumings, J., Zettl, A., Chen, S., Chem. Phys. Lett. 319, 457 (2000) CrossRef
Hsin, Y.L., Hwang, K.C., Chen, R.R., Kai, J.J., Adv. Mater. 13, 830 (2001) 3.0.CO;2-4>CrossRef
Lange, H., Sioda, M., Huczko, A., Zhu, Y.Q., Kroto, H.W., Walton, D.R.M., Carbon 41, 1617 (2003) CrossRef
Sano, N., Nakano, J., Kanki, T., Carbon 42, 667 (2004)
Sano, N., Wang, H., Alexandrou, I., Chhowalla, M., Teo, K.B.K., Amaratunga, G.A.J., J. Appl. Phys. 92, 2783 (2002) CrossRef
Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G.A.J., Nature 414, 506 (2001) CrossRef
Alexandrou, I., Sano, N., Burrows, A., Meyer, R.R., Wang, H., Ikirkland, A., Kiely, C.J., Amaratunga, G.A.J., Nanotechnology 14, 913 (2003) CrossRef
Yao, W.T., Yu, S.H., Zhou, Y., Jiang, J., Wu, Q.S., Zhang, L., Jiang, J., J. Phys. Chem. B 109, 14011 (2005) CrossRef
Loa, C.H., Tsung, T.T., Lin, H.M., J. Alloys Compd. 434–435, 659 (2007) CrossRef
Tien, D.C., Tseng, K.H., Liao, C.Y., Huang, J.C., Tsung, T.T., J. Alloys Compd. 463, 408 (2008) CrossRef
Lung, J.K., Huang, J.C., Tien, D.C., Liao, C.Y., Tseng, K.H., Tsung, T.T., Kao, W.S., Tsai, T.H., Jwo, C.S., Lin, H.M., Stobinski, L., J. Alloys Compd. 434–435, 655 (2007) CrossRef
Ashkarran, A.A., Iraji, A. zad, M.M. Ahadian, S.A. Mahdavi Ardakani, Nanotechnology 19, 195709 (2008) CrossRef
Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A., Acc. Chem. Res. 41, 1578 (2008) CrossRef
Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., J. Phys. Chem. B 107, 668 (2003) CrossRef
Hoonacker, A.V., Englebienne, P., Curr. Nanosci. 2, 359 (2006) CrossRef
J.S. Bradley, in Clusters and Colloids, edited by G. Schmid (VCH, Weinheim, 1994)
H. Bönnemann, K.S. Nagabhushana, in Encyclopedia Nanoscience and Nanotechnology, edited by H.S. Nalwa (ASP, 2004), Vol. 1
Jiang, H., Moon, K.S., Dong, H., Hua, F., Wong, C.P., Chem. Phys. Lett. 429, 492 (2006) CrossRef
Elkins, K.E., Chaubey, G.S., Nandwana, V., Liu, J.P., J. Nano Research 1, 23 (2008) CrossRef
Berhault, G., Bausach, M., Bisson, L., Becerra, L., Thomazeau, C., Uzio, D., J. Phys. Chem. C 111, 5915 (2007) CrossRef
Gole, A., Murphy, C.J., Chem. Mater. 16, 3633 (2004) CrossRef