Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T04:50:01.197Z Has data issue: false hasContentIssue false

Spectral excitation of dielectric matrix trace atomic and molecular species by atmospheric pressure sliding spark plasma

Published online by Cambridge University Press:  25 May 2012

K.H. Angeyo*
Affiliation:
Department of Physics, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
A. Golloch
Affiliation:
FG Instrumentelle Analytik, Universitat Duisburg-Essen, Standort Duisburg, 47048 Duisburg, Germany
*
Get access

Abstract

The goal of this work was to investigate the potential of sliding spark plasma to excite from dielectrics emission spectra that have utility in direct trace quantitative analysis of non-conducting materials in air at atmospheric pressure. The sliding spark is a special variety of pulsed plasma specularly discharging across a dielectric surface enforced between a pair of electrodes. Analysis of the emission spectra measured between 212 ≤ λ ≤ 511 nm using CCD spectrometer showed that the sliding spark is accompanied by prompt atomic and molecular emission over a broad wavelength range. Each dielectric is characterized by unique spectral features composed of mostly overlapping atomic, ionic and molecular lines and a complex background that results from the plasma species, cathode material, operating environment and the major components of the sample matrix including their reaction products. Among the measured lines a number (depending on the oxidation state of the element in the matrix) of atomic and ionic lines were found to be free from spectral interference and with good signal-to-noise ratio, which indicates their potential for direct trace quantitative analysis utilizing a new technique: sliding spark spectroscopy. Mostly ionic lines are optically thin. In the UV range the lines are especially not broadened and are identifiable against a weak continuum.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Meek, J.M., Craggs, J.D., Electrical Breakdown of Gases Wiley, New York, 1978)Google Scholar
Les Renardieres Group, Electra 53, 31 (1977)
Gallimberti, I., J. Phys. Colloq. 40, C7-193 (1979)CrossRef
Bazelyan, E.M., Raizer, Y.P., Spark Discharge (Chemical Rubber Co., New York, 1998)Google Scholar
Winge, R.K., Dekalb, E.L., Fassel, V.A., Appl. Spectrosc. 39, 673 (1985)CrossRef
Masse, L.P., Margot, J., Hubert, J. (Dept. Physique, Dept. Chim., Univ. Montreal, Montreal, PQ, Canada H3C 3J7), in Presented at 43rd Int. Conf. on Analytical Sciences and Spectroscopy, McGill University, Montreal, Canada, 1997
Peyruse, O., Nucl. Fus. 44, S202 (2004)CrossRef
Packer, W., Soc. Appl. Spectrosc. Bull. 4, 6 (1949)
Beverly, R.E. III, J. Appl. Phys. 48, 609 (1977)
Beverly, R.E. III, Progress in Optics XIV (North Holland, Amsterdam, 1978), p. 356Google Scholar
Danièl, E.V., Sov. Phys.: Tech. Phys. 10, 600 (1965)
Krile, J.T., Neuber, A.A., Dickensand, J.C., Krompholz, H.G., IEEE Trans. Plasma Sci. 33, 1149 (2005)CrossRef
Allen, N.L., Hashem, A.A.R., J. Phys. D: Appl. Phys. 35, 2551 (2002)CrossRef
Coulibaly, M.L., Ph.D. thesis, ÉEcole Centrale de Lyon, 2009Google Scholar
Romand, J., J. Quant. Spectrosc. Radiat. Transfer 6, 691 (1962)CrossRef
Gall, L.N., Kuzmin, A.G., J. Anal. Chem. 50, 459 (1995)
Gall, L.N., Davydov, D.N., Dashuk, P.N., Kuzman, A.G., Sov. Tech. Phys. Lett. 14, 497 (1988)
Kogut, K., Mazurek, B., Kasprzyk, K., Zboromirska-Wnukiwicz, B., Arch. Metall. Mater. 54, 1013 (2009)
Kaminsky, K., Atomic and Ionic Impact Phenomena on Metal Surfaces (Struktur und Eigenschaften der Materie, XXV) (Springer, Berlin, 1965), p. 156CrossRefGoogle Scholar
Angeyo, K.H., Ph.D. thesis, Universitäat Duisburg-Essen, 2004
Vodoar, B., Astoin, N., Nature 166, 1029 (1950)CrossRef
Golloch, A., Seidel, T., Fresenius J. Anal. Chem. 349, 32 (1994)CrossRef
Seidel, T., Golloch, A., Beerwald, H., Böhm, G., Fresenius J. Anal. Chem. 347, 92 (1993)CrossRef
Golloch, A., Siegmund, D., Fresenius J. Anal. Chem. 358, 804 (1997)CrossRef
Andreev, S.I., Vanyukov, M.P., Kotolov, A.B., Sov. Phys.: Tech. Phys. 7, 538 (1962)
Zoeltner, J.M., Scheeline, A., Appl. Spectrosc. 41, 943 (1987)CrossRef
Berverly, R.E. III, J. Appl. Phys. 69, 3830 (1991)CrossRef
Kalyatskii, I.I., Kassirov, G.M., Sov. Phys.: Tech. Phys. 9, 1137 (1965)
Abbott, R.B., Phys. Rev. 17, 482 (1921)CrossRef
Walters, J.P., Appl. Spectrosc. 23, 317 (1969)CrossRef
Kruger, C.H., Laux, C.O., Yu, L., Packan, D.M., Pierrot, L., Pure Appl. Chem. 74, 337 (2002)CrossRef
Macheret, S.O., Shneider, M.N., Miles, R.B., IEEE Trans. Plasma Sci. 30, 1301 (2002)CrossRef
Winge, R.K., DeKalb, E.L., Fassel, V.A., Appl. Spectrosc. 39, 673 (1985)CrossRef
Karabourniotis, D., Drakakis, E., Plasma Phys. Cont. Fusion 50, 12400 (2008)CrossRef
Harrison, G.R. (ed.), MIT Wavelength Tables (MIT Press, Massachusetts, 1969)Google Scholar
Schrön, W., in Proc. 6. Coll. Atomsp. Spurenal. Konstanz, edited by Welz, B. (Überlingen, 1991), p. 13Google Scholar
Werner, S., Liebmann, A., Nimmerfall, G., Fresenius J. Anal. Chem. 366, 79 (2000)
Danielsson, R., Peterson, L.R., Frank, A., Anal. Chem. Acta 354, 211 (1997)CrossRef