Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T00:27:02.125Z Has data issue: false hasContentIssue false

Solid state modified nuclear processes

Published online by Cambridge University Press:  24 October 2008

P. Kálmán*
Affiliation:
Budapest University of Technology and Economics, Institute of Physics, Department of Experimental Physics, Budafoki út 8. F. I. I. 10., 1521 Budapest, Hungary
T. Keszthelyi
Affiliation:
Budapest University of Technology and Economics, Institute of Physics, Department of Experimental Physics, Budafoki út 8. F. I. I. 10., 1521 Budapest, Hungary
D. Kis
Affiliation:
Budapest University of Technology and Economics, Institute of Nuclear Technics, Department of Nuclear Energy, Műegyetem rkpt. 9, 1111 Budapest, Hungary
Get access

Abstract

It is theoretically shown that an attractive effective potential isgenerated via optical phonon exchange between two quasi-free, differentparticles in deuterated Pd which, in turn, enhances the probability oftheir nuclear fusion reaction. Mechanisms, thatmay be responsible for extra heat production and nuclear isomer formation,are also discussed. Creation of 4He pairs dueto the significantly increased probability of the p + 7Li $\rightarrow$ 24He + 17.35 MeV and d + 6Li $\rightarrow$ 24He + 22.37 MeVnuclear reactions is predicted. Some of the basic questions of fusion reactions insolids seem to be successfully explained.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Raiola, F. et al., Eur. Phys. J. A 13, 377 (2002)
Bonomo, C. et al., Nucl. Phys. A 719, 37c (2003)
Fleishmann, M., Pons, S., J. Electroanal. Chem. 261, 301 (1989) CrossRef
Storms, E., Fusion Technol. 20, 433 (1991)
Nagel, D.J., Radiat. Phys. Chem. 51, 653 (1998) CrossRef
Mosier-Boss, P.A., Szpak, S., Gordon, F.E., Forsley, L.P.G., Eur. Phys. J. Appl. Phys. 40, 293 (2007) CrossRef
Szpak, S., Mosier-Boss, P.A., Young, C., Gordon, F.E., Naturwissenschaften 92, 394 (2005)
Kálmán, P., Keszthelyi, T., Nucl. Instrum. Meth. B 240, 781 (2005) CrossRef
Kálmán, P., Keszthelyi, T., Phys. Rev. C 69, 031606(R) (2004) CrossRef
Jackson, J.D., Phys. Rev. 106, 330 (1957) CrossRef
Szalewicz, K., Morgan, J.D., Monkhorst, H.J., Phys. Rev. A 40, 2824 (1989) CrossRef
P. Marmier, E. Sheldon, Physics of Nuclei and Particles, Vol. 1 (Academic, New-York, 1969), pp. 316–317
Sun, Z., Tománek, D., Phys. Rev. Lett. 63, 59 (1989) CrossRef
Leggett, A.J., Baym, G., Phys. Rev. Lett. 63, 191 (1989) CrossRef
Rowe, J.M. et al., Phys. Rev. Lett. 33, 1297 (1974) CrossRef
The correct expression of $a_{1,2}=\sqrt{\hbar\omega_{0}/E}(y^{2}\mp1)/(2y)$ (see under Eq. (22) in [8]), consequently the peaks in Figures 4a–4c appear at $E/\hbar\omega_{0}=1$ and $E=E^{\prime}=\hbar\omega_{0}$ should stand in the capture of Figures 5–7. Furthermore $\hat{V}_{2}$ above equation (21) of [8] must be divided by $\sqrt{2}$
Kashy, E. et al., Phys. Rev. C 40, R1 (1989) CrossRef
C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963), pp. 148–149
With increasing u the decrease of $N(E_{F}) $ , [13] and [20], leads to the decrease of the shielding parameter, that results in considerable weakening of shielding
Faulkner, J.S., Phys. Rev. B 13, 2391 (1976) CrossRef
J.M. Ziman, Principles of the Theory of Solids (University Press, Cambridge, 1964)
http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/
See [5] Figure 5, p. 660
Szpak, S., Mosier-Boss, P.A., Young, C., Gordon, F.E., J. Electroanal. Chem. 580, 284 (2005) CrossRef
Karabut, A.B., Kucherov, Y.R., Savvatimova, I.B., Phys. Lett. A 170, 265 (1992) CrossRef