Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T10:49:40.776Z Has data issue: false hasContentIssue false

Simulation on the effects of torsion strain on the mechanical properties of SiC nanowires under tensile and compressive loading

Published online by Cambridge University Press:  17 July 2008

Z.-G. Wang*
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
D.-M. Cheng
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Z.-J. Li
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
X.-T. Zu
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Get access

Abstract

Molecular dynamics simulations with Tersoff potentials were used to study the tensile and compressive mechanical behavior of SiC nanowires with torsion strain. The simulation results show that small torsion strain does not affect the mechanical behavior of SiC nanowires. However, large torsion strain induces the decrease of the critical stress. With large torsion strain, the collapse occurs in the nanowires before tensile failure and compressive buckling, and deformation zone occurs in the collapsed part.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fissel, A., Schroter, B., Richter, W., Appl. Phys. Lett. 66, 3182 (1995) CrossRef
Wu, B., Heidelberg, A., Boland, J.J., Nat. Mater. 4, 525 (2005) CrossRef
Poncharal, P., Wang, Z.L., Ugarte, D., Heer, W.A., Science 283, 1513 (1999) CrossRef
Wong, E.W., Sheehan, P.E., Liber, C.M., Science 277, 1971 (1997) CrossRef
Lu, K., Sui, M.L., Scr. Metall. Mater. 28, 1465 (1993) CrossRef
Dai, H., Wong, E.W., Lu, Y., Fan, S., Lieber, C.M., Nature 375, 769 (1995) CrossRef
Meng, G.W., Zhang, L.D., Mo, C.M., Zhang, S.Y., Qin, Y., Feng, S.P., Li, H.J., J. Mater. Res. 13, 2533 (1998) CrossRef
Zhou, X.T., Wang, N., Lai, H.L., Peng, H.Y., Bello, I., Wong, N.B., Lee, C.S., Lee, S.T., Appl. Phys. Lett. 74, 3942 (1999) CrossRef
Hu, J.Q., Lu, Q.Y., Tang, K.B., Deng, B., Jiang, R.R., Yu, W.C., Zhou, G.E., Liu, X.M., Wu, J.X., J. Phys. Chem. B 104, 5251 (2000) CrossRef
Xia, Y., Yang, P., Adv. Mater. 15, 351 (2003) CrossRef
Makeev, M.A., Srivastava, D., Menon, M., Phys. Rev. B 74, 165303 (2006) CrossRef
Refson, K., Comput. Phys. Commun. 126, 310 (2000) CrossRef
Tersoff, J., Phys. Rev. Lett. 56, 632 (1987) CrossRef
Tersoff, J., Phys. Rev. B 39, 5566 (1989) CrossRef
Nordland, K., Keinonen, J., Mattila, T., Phys. Rev. Lett. 77, 699 (1996) CrossRef
Devanathan, R., Diaz de, T. la Rubia, W.J. Weber, J. Nucl. Mater. 253, 47 (1998) CrossRef
Ivashchenko, V.I., Turchi, P.E.A., Shevchenko, V.I., Phys. Rev. B 75, 085209 (2007) CrossRef
Gao, F., Weber, W.J., Appl. Phys. Lett. 82, 913 (2003) CrossRef
Gao, F., Weber, W.J., Phys. Rev. B 66, 024106 (2006) CrossRef
Devanathan, R., Weber, W.J., Gao, F., J. Appl. Phys. 90, 2303 (2001) CrossRef
Porter, L.J., Li, J., Yip, S., J. Nucl. Mater. 246, 53 (1997) CrossRef
Tang, M.J., Yip, S., Phys. Rev. B 52, 15150 (1995) CrossRef
Luo, X., Qian, G.F., Fei, W.D., Wang, E.G., Chen, C.F., Phys. Rev. B 57, 6234 (1998) CrossRef
Shen, G.Z., Bando, Y., Ye, C.H., Liu, B.D., Golberg, D., Nanotechnology 17, 3648 (2006)
Cambaz, G.Z., Yushin, G.N., Gogotsi, Y., Lutsenko, V.G., Nano Lett. 6, 548 (2006) CrossRef
J.M. Haile, Molecular Dynamics Simulation (Wiley, New York, 1992)
Wang, Z.G., Zu, X.T., Gao, F., Weber, W.J., Eur. Phys. J. B 61, 413 (2008) CrossRef