Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T08:17:09.434Z Has data issue: false hasContentIssue false

Simulation of the electrode shape change in electrochemical machining based on the level set method

Published online by Cambridge University Press:  23 March 2012

V. Topa
Affiliation:
Department of Electrical Engineering, Technical University of Cluj-Napoca, G. Baritiu Street 26-28, 400020, Cluj-Napoca, Romania
M. Purcar*
Affiliation:
Department of Electrical Engineering, Technical University of Cluj-Napoca, G. Baritiu Street 26-28, 400020, Cluj-Napoca, Romania
A. Avram
Affiliation:
Department of Electrical Engineering, Technical University of Cluj-Napoca, G. Baritiu Street 26-28, 400020, Cluj-Napoca, Romania
C. Munteanu
Affiliation:
Department of Electrical Engineering, Technical University of Cluj-Napoca, G. Baritiu Street 26-28, 400020, Cluj-Napoca, Romania
R. Chereches
Affiliation:
Department of Electrical Engineering, Technical University of Cluj-Napoca, G. Baritiu Street 26-28, 400020, Cluj-Napoca, Romania
L. Grindei
Affiliation:
Department of Electrical Engineering, Technical University of Cluj-Napoca, G. Baritiu Street 26-28, 400020, Cluj-Napoca, Romania
*
Get access

Abstract

This paper proposes a generally applicable numerical algorithm for the simulation of two dimensional electrode shape changes during electrochemical machining processes. The computational model consists of two coupled problems: an electrode shape change rate analysis and a moving boundary problem. The innovative aspect is that the workpiece shape is computed over a number of predefined time steps by convection of its surface with a velocity proportional and in the direction of the local electrode shape change rate. An example related to the electrochemical machining of a slot in a stainless steel plate is presented here to demonstrate the strong features of the proposed method.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McGeough, J.A., Principles of Electrochemical Machining (Chapman & Hall, London, 1974)Google Scholar
McGeough, J.A., Barker, M.B., ChemTech. 9, 536 (1991)
Alder, G.M., Clifton, D., Mill, F., Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 214, 745 (2000)CrossRef
Prentice, G.A., Tobias, C.W., J. Electrochem. Soc. 1, 76 (1978)
Jain, V.K., Pandey, P.C., J. Eng. Ind. 103, 183 (1981)CrossRef
Jain, V.K., Pandey, P.C., Precis. Eng. 103, 23 (1980)CrossRef
Deconinck, J., Lecture Notes in Engineering, vol. 75, (Springer-Verlag, Berlin, 1992)Google Scholar
Van den Bossche, B., Bortels, L., Deconinck, J., BEM computations of current density distributions in electrochemical reactors applied to electroforming and electrochemical machining processes, in ANCME, Belgium, 2000 Google Scholar
Narayanan, O.H., Hinduja, S., Noble, C.F., J. Mach. Tool Des. Res. 26, 323 (1986)CrossRef
Chang, C.S., Hourng, L.W., J. Appl. Electrochem. 31, 145 (2001)CrossRef
De Silva, A.K.M., Altena, H.S.J., McGeough, J.A., CIRP Ann. 49, 151 (2000)CrossRef
Altena, H., Ph.D. thesis, Glasgow Caledonian University, 2000
Adey, R.A., Electrical Engineering Applications, vol. 7 (Springer-Verlag, Berlin, Heidelberg, 1990)Google Scholar
Purcar, M., Van den Bossche, B., Bortels, L., Deconinck, J., Wesselius, P., Corrosion 59, 1019 (2003)CrossRef
Kozak, J., J. Mater. Process. Technol. 76, 170 (1998)CrossRef
Kozak, J., J. Mater. Process. Technol. 109, 354 (2001)CrossRef
Bortels, L., Purcar, M., Van den Bossche, B., Deconinck, J., J. Mater. Process. Technol. 149, 486 (2004)CrossRef
Purcar, M., Dorochenko, A., Bortels, L., Deconinck, J., Van den Bossche, B., J. Mater. Process. Technol. 203, 58 (2008)CrossRef
Sethian, J.A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics Computer Vision, and Material Science, 2nd edn. (Cambridge University Press, Cambridge, 1999)Google Scholar
Osher, S.J., Fedkiw, R.P., Level Set Methods and Dynamic Implicit Surfaces (Springer-Verlag, New York, 2003)CrossRefGoogle Scholar
Sethian, J.A., Wiegmann, A., J. Comput. Phys. 163, 489 (2000)CrossRef
Purcar, M., Bortels, L., Van den Bossche, B., Deconinck, J., J. Mater. Process. Technol. 109, 472 (2004)CrossRef
Lee, J., Talbot, J.B., J. Electrochem. Soc. 152, C706 (2005)CrossRef
Deconinck, J., J. Appl. Electrochem. 24, 212 (1994)CrossRef
Purcar, M., Deconinck, J., Van den Bossche, B., Bortels, L., Eur. Phys. J. Appl. Phys. 39, 85 (2007)CrossRef