Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T15:41:25.501Z Has data issue: false hasContentIssue false

Schottky junction study for electrodeposited ZnO thin films and nanowires

Published online by Cambridge University Press:  10 October 2014

Tayeb Brouri
Affiliation:
Université Paris-Est, LPMDI (EA 7264), UPEM, 77454 Marne-la-Vallée, France
Yamin Leprince-Wang*
Affiliation:
Université Paris-Est, LPMDI (EA 7264), UPEM, 77454 Marne-la-Vallée, France
*
Get access

Abstract

ZnO thin films and well-aligned nanowire arrays have been synthesized via electrochemical deposition method, a low temperature and low cost synthesis method. For the ZnO nanowires growth, the electrodeposition consists of two steps: the ZnO buffer layer was firstly deposited on the substrate using galvanostatic method at room temperature following by the ZnO nanowires growth under potentiostatic method at 80 °C. This second step has also used for the ZnO thin films growth directly on substrate. The morphological and microstructural properties of the as-deposited ZnO have been characterized using scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), as well as photoluminescence spectroscopy (PL). The electrical transport of the ZnO thin films and nanowire arrays have been studied at room temperature both in the symmetrical Al/ZnO/Al electrode configuration guarantying a good Ohmic contact and in the asymmetrical Al/ZnO/Au electrode configuration demonstrating a typical Schottky contact at the interface ZnO/Au. The feature parameters such as the series resistance, the Schottky barrier height, and the ideality factor, have been systematically analyzed. Comparing the diode parameters between thin films and nanowire arrays, we deduced that about 1/3 of the ZnO nanowires come into effective contact with the top Al electrode.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, Z.L., Nanowires and Nanobelts: Materials, Properties and Devices – Metal and Semiconductor Nanowires, vol. 1 (Kluwer Academic Publishers, Dordrecht, 2003)Google Scholar
Wang, Z.L., Nanowires and Nanobelts Materials, Properties and Devices – Nanowires and Nanobelts of Functional Materials, vol. 2 (Kluwer Academic Publishers, Dordrecht, 2003)Google Scholar
Wang, Z.L., Song, J.H., Science 312, 242 (2006)CrossRefPubMed
Gao, P.X., Song, J.H., Liu, J., Wang, Z.L., Adv. Mater. 19, 67 (2007)CrossRef
Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, G., Adv. Mater. 21, 4087 (2009)CrossRef
Baxter, J.B., Walker, A.M., van Ommering, K., Aydil, E.S., Nanotechnology 17, S304 (2006)CrossRef
Zhou, H., Wissinge, M., Fallert, J., Hauschild, R., Stelzl, F., Klingshirn, C., Kalt, H., Appl. Phys. Lett. 91, 181112 (2007)CrossRef
Bie, Y.Q., Liao, Z.M., Wang, P.W., Zhou, Y.B., Han, X.B., Ye, Y., Zhao, Q., Wu, X.S., Dai, L., Xu, J., Sang, L.W., Deng, J.J., Laurent, K., Leprince-Wang, Y., Yu, D.P., Adv. Mater. 22, 4284 (2010)CrossRef
Kim, K., Debnath, P.C., Kim, S., Lee, S.Y., Appl. Phys. Lett. 98, 113109 (2011)CrossRef
Sohn, J.I., Choi, S.S., Morris, S.M., Bendall, J.S., Coles, H.J., Hong, W.K., Jo, G., Lee, T., Welland, M.E., Nano Lett. 10, 4316 (2010)CrossRef
Lupan, O., Chai, G., Chow, L., Microelectron. J. 38, 1211 (2007)CrossRef
Gupta, S.K., Joshi, A., Kaur, M., J. Chem. Sci. 122, 57 (2010)CrossRef
Zhang, Y., Jia, H.B., Wang, R.M., Chen, C.P., Luo, X.H., Yu, D.P., Appl. Phys. Lett. 83, 4631 (2003)CrossRef
Kong, Y.C., Yu, D.P., Zhang, B., Fang, W., Feng, S.Q., Appl. Phys. Lett. 78, 407 (2001)CrossRef
Wang, Y.W., Zhang, L.D., Wang, G.Z., Peng, X.S., Chu, Z.Q., Liang, C.H., J. Cryst. Growth 234, 171 (2002)CrossRef
Geng, B.Y., Xie, T., Peng, X.S., Lin, Y., Yuan, X.Y., Meng, G.W., Zhang, L.D., Appl. Phys. A 77, 363 (2003)CrossRef
Pauporté, Th., Yoshida, T., Goux, A., Lincot, D., J. Electroanal. Chem. 534, 55 (2002)CrossRef
Leprince-Wang, Y., Yacoubi-Ouslim, A., Wang, G.Y., Microelectron. J. 36, 625 (2005)CrossRef
Leprince-Wang, Y., Wang, G.Y., Zhang, X.Z., Yu, D.P., J. Cryst. Growth 287, 89 (2006)CrossRef
Peulon, S., Lincot, D., Adv. Mater. 8, 166 (1996)CrossRef
Lévy-Clément, C., Tena-Zaera, R., Ryan, M.A., Katty, A., Hodes, G., Adv. Mater. 17, 1512 (2005)CrossRef
Laurent, K., Yu, D.P., Tusseau-Nenez, S., Leprince-Wang, Y., J. Phys. D: Appl. Phys. 41, 195410 (2008)CrossRef
Ong, H.C., Du, G.T., J. Cryst. Growth 265, 471 (2004)CrossRef
Vanheusden, K., Seager, C.H., Warren, W.L., Tallant, D.R., Voigt, J.A., Appl. Phys. Lett. 68, 403 (1996)CrossRef
Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.J., Morkoç, H., J. Appl. Phys. 98, 041301 (2005)CrossRef
Size, S.M., Physics of Semiconductor Devices (Ed. John Wiley & Sons, New York, 1981)Google Scholar
Cibilis, R.M., Buitrago, R.H., J. Appl. Phys. 58, 1075 (1985)CrossRef
Ohachi, N., Tanaka, J., Ohgaki, T., Haneda, H., Ozawa, M., Tsurumi, T., J. Mater. Res. 17, 1529 (2002)
Polyakov, A.Y., Smirnov, N.B., Kozhukova, E.A., Vdodin, V.I., Ip, K., Heo, Y.W., Norton, D.P., Pearton, S.J., Appl. Phys. Lett. 83, 1575 (2003)CrossRef
Mead, C.A., Phys. Lett. 18, 218 (1965)CrossRef
Neville, R.C., Mead, C.A., J. Appl. Phys. 41, 3795 (1970)CrossRef
Koppa, B.J., Davis, R.F., Nemannich, R.J., Appl. Phys. Lett. 82, 400 (2003)CrossRef
Klason, P., Nur, O., Willander, M., Nanotechnology 19, 475202 (2008)CrossRef
Bardeen, J., Phys. Rev. 71, 717 (1947)CrossRef
Cheng, K., Cheng, G., Wang, S.J., Li, L.S., Dai, S.X., Zhang, X.T., Zou, B.S., Du, Z.L., New J. Phys. 9, 214 (2007)CrossRef