Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T20:47:23.494Z Has data issue: false hasContentIssue false

Role of cellular tone and microenvironmental conditions on cytoskeleton stiffness assessed by tensegrity model

Published online by Cambridge University Press:  15 January 2000

S. Wendling*
Affiliation:
Laboratoire de Mécanique Physique, CNRS-ESA 7052, Université Paris 12-Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
E. Planus
Affiliation:
INSERM, U492 Physiopathologie et Thérapeutique Respiratoires, Hôpital Henri Mondor, 94010 Créteil, France
V. M. Laurent
Affiliation:
INSERM, U492 Physiopathologie et Thérapeutique Respiratoires, Hôpital Henri Mondor, 94010 Créteil, France
L. Barbe
Affiliation:
Laboratoire de Mécanique Physique, CNRS-ESA 7052, Université Paris 12-Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
A. Mary
Affiliation:
INSERM, U492 Physiopathologie et Thérapeutique Respiratoires, Hôpital Henri Mondor, 94010 Créteil, France
C. Oddou
Affiliation:
Laboratoire de Mécanique Physique, CNRS-ESA 7052, Université Paris 12-Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
D. Isabey
Affiliation:
INSERM, U492 Physiopathologie et Thérapeutique Respiratoires, Hôpital Henri Mondor, 94010 Créteil, France
Get access

Abstract

We have tried to understand the role of cellular tone (or internal tension mediated by actin filaments) and interactions with the microenvironment on cellular stiffness. For this purpose, we compared the apparent elasticity modulus of a 30-element tensegrity structure with cytoskeleton stiffness measured in subconfluent and confluent adherent cells by magnetocytometry, assessing the effect of changing cellular tone by treatment with cytochalasin D. Intracellular and extracellular mechanical interactions were analyzed on the basis of the non-dimensional relationships between the apparent elasticity modulus of the tensegrity structure normalized by Young's modulus of the elastic element versus: (i) element size, (ii) internal tension, and (iii) number of spatially fixed nodes, for small deformation conditions. Theoretical results and rigidity measurements in adherent cells consistently showed that higher cellular tone and stronger interdependencies with cellular environment tend to increase cytoskeleton stiffness. Visualization of the actin lattice before and after depolymerization by cytochalasin D tended to confirm the geometrical and mechanical assumptions supported by analysis of the present model.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davies, P.F., Robotewskyj, A., Griem, M.L., J. Clin. Invest. 93, 2031 (1994). CrossRef
D. Ingber, J. Folkman, in Cell shape: Determinants, Regulation and Regulatory Role (S. W.D. and B. F., Editors, 1989), pp. 3-31.
Kolodney, M.S., Elson, E.L., Proc. Natl. Acad. Sci. USA 92, 10252 (1995). CrossRef
Choquet, D., Felsenfeld, D.P., Sheetz, M.P., Cell 88, 39 (1997). CrossRef
Planus, E. et al., J. Cell Sci. 112, 243 (1998).
Wang, N., Ingber, D.E., Biophys. J. 66, 1 (1994). CrossRef
Pourati, J. et al., Am. J. Physiol. 272, C1283 (1998). CrossRef
Heidemann, S.R., Science 260, 1080 (1993). CrossRef
Cellular Solids, Structure and Properties, edited by L.J. Gibson, M.F. Ashby (Pergamon Press, 1988).
Biomechanics; Mechanical properties of living tissues, edited by Y.C. Fung (Springer Verlag, 1981), Vol. 1.
Evans, E., Yeung, A., Biophys. J. 56, 151 (1989). CrossRef
Hochmuth, R.M., Waugh, R.E., Annu. Rev. Physiol. 49, 209 (1987). CrossRef
Stamenovic, D. et al., J. Theor. Biol. 181, 125 (1996). CrossRef
Coughlin, M.F., Stamenovic, D., J. Appl. Mech. 64, 480 (1997). CrossRef
Introduction to tensegrity, edited by A. Pugh (University of California Press, 1976).
D.E. Ingber, J.D. Jamieson, in Gene expression during normal and malignant differentiation, edited by L. Anderson, C. Gahmberg, P. Ekblom (San Diego Academic Press, 1985), pp. 13-32.
Maniotis, A.J., Chen, C.S., Ingber, D.E., Proc. Natl. Acad. Sci. USA 94, 849 (1997). CrossRef
Dennerll, T.J., Buxbaum, R.E., Heidemann, S.R., J. Cell Biol. 107, 665 (1988). CrossRef
Danowski, B., J. Cell Sci. 93, 255 (1989).
Harris, A.K., Wild, P., Stopak, D., Science 208, 177 (1980). CrossRef
Geodesic Math and How to Use It, edited by H. Kenner (University of California Press, 1976).
Mohri, F., Motro, R., Struct. Eng. Rev. 5, 231 (1993).
Argyris, J.H., Scharpf, D.W., J. Struct. Div. 106, 633 (1972).
Laurent, V. et al., Arch. Physiol. Biochem. 106, 183 (1998).
Wang, N., Ingber, D., Butler, P., Focus 3, 3 (1993).
Wang, N., Butler, J., Ingber, D., Science 260, 1124 (1993). CrossRef
Ingber, D.E., Karp, S., J. Cell Biol. 115, 394A (1991).
Wang, N., Ingber, D.E., Biochem. Cell Biol. 73, 1 (1995). CrossRef
Schliwa, M., Blerkom, J.V., J. Cell Biol. 90, 222 (1981). CrossRef
Potard, U.S.B., Butler, J.P., Wang, N., Am. J. Physiol. 272, C1654 (1997). CrossRef
Thoumine, O. et al., Exp. Cell Res. 219, 427 (1995). CrossRef
Wendling, S., Oddou, C., Isabey, D., J. Theor. Biol. 196, 309 (1999). CrossRef
Coughlin, M.F., Stamenovic, D., J. Biomech. Eng. 120, 770 (1998). CrossRef
Ting-Beall, H.P., Lee, A.S., Hochmuth, R.M., Ann. Biomed. Eng. 23, 666 (1995). CrossRef
Gittes, F. et al., J. Cell Biol. 120, 923 (1993). CrossRef
Kojima, H., Ishijima, A., Yanagida, T., Proc. Natl. Acad. Sci. USA 91, 12962 (1994). CrossRef
Thoumine, O., J. Phys. III France 6, 1555 (1996). CrossRef