Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T07:22:49.368Z Has data issue: false hasContentIssue false

A robust multivariable approach for hybrid fuel cell supercapacitor power generation system

Published online by Cambridge University Press:  20 May 2011

D. Hernandez*
Affiliation:
G2Elab, Grenoble Electrical Engineering Laboratory, Grenoble, France
D. Riu
Affiliation:
G2Elab, Grenoble Electrical Engineering Laboratory, Grenoble, France
O. Sename
Affiliation:
GIPSA-lab, Laboratoire Grenoble Images Parole Signal Automatique, Grenoble, France
F. Druart
Affiliation:
LEPMI, Laboratoire d'Électrochimie et de Physicochimie des Matériaux et des Interfaces, Grenoble, France
*
Get access

Abstract

In this article, a $\mathcal{H}_{\infty}$ control methodology is proposed for a hybrid power generation system composed by a 500 W PEM fuel cell and a 58 F supercapacitor. The control strategy consists in synthetizing a multivariable PI controller with $\mathcal{H}_{\infty}$ performance in order to manage powers between two electrochemical sources. The controller is then designed through an optimization procedure based on solving some linear matrix inequalities (LMI). The control performance in time and frequency domains are then analyzed and compared with classical controllers. Results show the efficiency of the proposed methodology in order to reduce time spent for design.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. Hissel et al., Fundamentals and Developments of Fuel Cell Conf., Nancy, France, 2008
R.D. Middlebrook, IEEE Trans. Power Electron. PE-2, 109 (1987)
Alvarez-Ramirez, J., Cervantes, I., IEEE Trans. Circuits Syst. 48, 103 (2001) CrossRef
Valero, I., Bacha, S., Rullière, E., J. Power Sources 156, 50 (2006) CrossRef
S. Sailler, F. Druart, D. Riu, P. Ozil, Proc. of 18th European Symp. on Computer Aided Process Engineering (ESCAPE), 2008
Suh, K.W., Stefanopoulou, A.G., Int. J. Energy Res. 29, 1167 (2005) CrossRef
Y. Song, S. Han, X. Li, S. Park, H. Jeong, B. Jung, Power Electronics Specialists Conf., 2007, pp. 1261–1266
Zheng, F., Wang, Q.G., Lee, T.H., Automatica 38, 517 (2002) CrossRef
He, Y., Wang, Q.G., IEEE Trans. Automat. Contr. 51, 1678 (2006) CrossRef
Usman, M., Riu, D., Druart, F., Rosini, S., Bultel, Y., Retière, N., J. Power Sources 160, 1170 (2006)
I. Gadoura, T. Suntio, K. Zenger, Proc. of the 15th IFAC World Congress on Automatic Control, Barcelona, Spain, 2002
Middlebrook, R.D., Cuk, S., Int. J. Electron. 42, 521 (1977) CrossRef
Bacha, S., Brunello, M., Hassan, A., Electr. Mach. Power Syst. 22, 493 (1994) CrossRef
Thounthong, P., Rael, S., Davat, B., J. Power Sources 193, 376 (2009) CrossRef
S. Skogestad, I. Postlethwaite, Multivariable feedback control: analysis and design (Wiley & Sons, New York, 1996)
Scherer, C., Gahinet, P., Chilali, M., IEEE Trans. Automat. Contr. 42, 896 (1997) CrossRef
S. Gumussoy, D. Henrion, M Millstone, M. Overton, Proc. of IFAC Symp. on Robust Control Design, Haifa, Israel, 2009
Wang, C., Nehrir, M.H., IEEE Trans. Energy Convers. 22, 864 (2007) CrossRef
O. Sename, L. Dugard, Proc. of European Control Conf., Cambridge, UK, 2003
D. Hernandez-Torres, M. Sautreuil, N. Retière, D. Riu, O. Sename, Proc. of IEEE Int. Conf. Industrial Technology (ICIT), Victoria, Australia, 2009, pp. 166–171
Yu, X., Starke, M., Tolbert, L., Ozpinecci, B., IET Electr. Power Appl. 1, 643 (2007) CrossRef