Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T20:42:53.581Z Has data issue: false hasContentIssue false

Remote plasma assisted MOCVD growth of GaN on 4H-SiC: growth mode characterization exploiting ellipsometry

Published online by Cambridge University Press:  14 September 2005

M. Losurdo*
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari, Italy
M. M. Giangregorio
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari, Italy
P. Capezzuto
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari, Italy
G. Bruno
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari, Italy
T.-H. Kim
Affiliation:
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709, USA
S. Choi
Affiliation:
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709, USA
A. Brown
Affiliation:
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709, USA
Get access

Abstract

GaN is grown on Si-face 4H-SiC(0001) substrates using remote plasma-assisted metalorganic chemical vapour deposition (RP-MOCVD). The pre-dissociation of nitrogen by the remote plasma is used for lowering the deposition temperature to approximately 700 °C. Remote plasma processing is also used for SiC surface pre-treatments including a low-temperature atomic hydrogen cleaning (by remote H2 plasma) and nitridation (by remote N2 plasma). Furthermore, in situ spectroscopic ellipsometry is used for monitoring in real time all the steps of substrate pre-treatments and the heteroepitaxial growth of GaN on SiC. Our characterization emphasis is on understanding the nucleation mechanism and the GaN growth mode, which depend on the SiC surface preparation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Namkoong, G., Doolittle, W.A., Brown, A.S., Losurdo, M., Capezzuto, P., Bruno, G., J. Appl. Phys. 91, 2499 (2002) CrossRef
Keller, S., Keller, B.P., Wu, Y.F., Heying, B., Kapolnek, D., Speck, J.S., Mishra, U.K., DenBarrs, S.P., Appl. Phys. Lett. 68, 1525 (1996) CrossRef
Peters, S., Schmidtling, T., Trepk, T., Pohl, U.W., Zettler, J.T., Richter, W., J. Appl. Phys. 88, 4085 (2000) CrossRef
B. Cao, K. Xu, Y. Ishitani, A. Yoshikawa, Thin Solid Films 455456, 661 (2004)
Losurdo, M., Capezzuto, P., Bruno, G., Brown, A., Kim, T.H., Yi, C., Zakharov, D.N., Liliental-Weber, Z., Appl. Phys. Lett. 86, 021920 (2005) CrossRef
Losurdo, M., Giangregorio, M.M., Capezzuto, P., Bruno, G., Namkoong, G., Doolittle, W.A., Brown, A.S., J. Appl. Phys. 95, 8408 (2004) CrossRef
H.G. Tompkins, in A user's guide to ellipsometry (Academic Press, Inc, San Diego, 1993)
Bruggemann, D.A.G., Ann. Phys. (Leipzig) 24, 636 (1935) CrossRef
Losurdo, M., Capezzuto, P., Bruno, G., Namkoong, G., Doolittle, W.A., Brown, A.S., J. Appl. Phys. 91, 2508 (2002) CrossRef
Losurdo, M., Giangregorio, M.M., Bruno, G., Brown, A.S., Kim, T.H., Appl. Phys. Lett. 85, 4434 (2004) CrossRef
Waltereit, P., Lim, S.H., McLaurin, M., Speck, J.S., Phys. Status Solidi A 194, 524 (2002) 3.0.CO;2-N>CrossRef
Frayssinet, E., Beaumont, B., Faurie, J.P., Gibart, P., Makkai, Zs., Pecz, B., Lefebvre, P., Valvin, P., MRS Int. J. Nitride Semicond. Res. 7, 8 (2002) CrossRef
Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., Appl. Phys. Lett. 48, 353 (1996) CrossRef
Rouviere, J.L., Arlery, M., Niebuhr, R., Bachem, K.H., Briot, O., MRS Int. J. Nitr. Semic. Res. 1, 33 (1996) CrossRef