Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T08:26:31.142Z Has data issue: false hasContentIssue false

Regular and chaotic vibrations in the rub impact model of a Jeffcott rotor with a fractional restore force

Published online by Cambridge University Press:  09 December 2013

Grzegorz Litak*
Affiliation:
Department of Applied Mechanics, Technical University of Lublin, Nadbystrzycka 36, PL-20-618 Lublin, Poland
Jerzy T. Sawicki
Affiliation:
Cleveland State University, Department of Mechanical Engineering, Cleveland, OH 44115, USA
*
Get access

Abstract

We study the solutions and bifurcations of the Jeffcott rotor with a rubbing effect. The model of horizontal rotor possesses such nonlinear effects as inertia, dry friction, and contact loss between the rotor and stator. By the exceeding of the rotor-stator radius clearance, the rotor can penetrate into the limiting rubbers with a fractional power in the restore force. The system response is analyzed by a bifurcation diagram. The specific cases are additionally clarified by means standard methods and quantified by the test 0-1 which is sensitive to chaotic behaviour.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ehrich, F., J. Vibr. Acoust. 114, 93 (1992)CrossRef
Kraker, D., Crooijmans, M.T.M., Campen, D.H., Proc. IMechE. C 284, 297 (1988)
Padovan, J., Choy, F.K., J. Turbomachinery 108, 527 (1987)CrossRef
Goldman, P., Muszynska, A., J. Vibr. Acoust. 116, 541 (1994)CrossRef
Muszynska, A., Shock Vibr. Digest 21, 3 (1989)CrossRef
Adams, M.L., Abu-Mahfouz, I.A., in Proceedings of The Fourth Int. Conf. on Rotor Dynamics, Chicago, IL, 1994, p. 29
Piccoli, H.C., Weber, H.I., Nonlin. Dyn. 16, 55 (1998)CrossRef
Beatty, R.F., J. Vib. Acoust. 107, 151 (1985)CrossRef
Sawicki, J.T., Padovan, J., Al-Khatib, R., Int. J. Rotating Machinery 5, 295 (1999)CrossRef
Sawicki, J.T., Montilla-Bravo, A., Gosiewski, Z., Int. J. Rotating Machinery 9, 295 (2003)CrossRef
Sawicki, J.T., Technical Report, GE CRDC, Schenectady, 2000
Chu, F., Zhang, Z., J. Sound Vib. 210, 1 (1998)CrossRef
Chu, F., Lu, W., J. Sound Vib. 283, 621 (2005)CrossRef
Aidanää, J.-O., in Proc. of The 10th Int. Sym. on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, 2004
Popp, K., Stelter, P., Phil. Trans. Roy. Soc. London 332, 89 (1990)CrossRef
Karpenko, E.V., Wiercigroch, M., Pavlovskaia, E.E., Cartmell, M.P., Int. J. Mech. Sciences 44, 475 (2002)CrossRef
Gottwald, G.A., Melbourne, I., Proc. R. Soc. Lond. A 460, 603 (2004)CrossRef
Gottwald, G.A., Melbourne, I., Physica D 212, 100 (2005)CrossRef
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., Physica D 16, 285 (1985)CrossRef
Litak, G., Syta, A., Wiercigroch, M., Chaos, Solitons & Fractals 40, 2095 (2009)CrossRef
Litak, G., Schubert, S., Radons, G., Nonlinear Dyn. 69, 1255 (2012)CrossRef
Krese, B., Govekar, E., Nonlinear Dyn. 67, 2101 (2012)CrossRef
Litak, G., Bernardini, D., Syta, A., Rega, G., Rysak, A., Eur. Phys. J. Special Topics 222, 1637 (2013)CrossRef
Kantz, H., Schreiber, T., Non-Linear Time Series Analysis (Cambridge University Press, Cambridge, 1997)Google Scholar
Gottwald, G.A., Melbourne, I., SIAM J. App. Dyn. Syst. 8, 129 (2009)CrossRef