Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T11:59:13.534Z Has data issue: false hasContentIssue false

Rayleigh scattering on a microwave surfatron plasma to obtain axial profiles of the atom density and temperature

Published online by Cambridge University Press:  25 May 2012

S. Hübner*
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
E. Iordanova
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
E.A.D. Carbone
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
J.J.A.M. van der Mullen
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
*
Get access

Abstract

The axial dependency of the central-axis value of the heavy particle density and temperature of surface-wave plasmas is studied using Rayleigh scattering (RyS). The plasma is generated at a frequency of 2.45 GHz in argon by a surfatron operating under the standard settings of a power of 45 W, a flow rate of 50 sccm and a pressure of 20 mbar. To investigate the effect of the pressure on the gas temperature, we also investigated 6 and 10 mbar plasmas. By using a two-dimensional intensified CCD array we could determine and eliminate the influence of false stray light, a major disturbing factor in the determination of the Rayleigh signal. In order to trace the energy fluxes that determine the gas temperature, we performed Thomson scattering so that the properties of the electron gas are known. It is found that the gas temperature, Ta, depends on the wall temperature and the product of the gas pressure and the electron pressure. The latter implies that Ta follows the electron density axially, meaning that it is highest at the launcher and decreases monotonically in the wave propagation direction. The maximum gas temperature of around Ta = 800 K is found close to the launcher for the highest gas pressure of 20 mbar. For lower pressures we find lower Ta values. The extrapolation of Ta toward the end of the plasma column leads to a temperature of about 320 K. This study reveals that, for the argon plasmas under study, the central-axis values of the gas temperature are determined by the balance between the heating of the gas by means of elastic electron collisions and the cooling due to heat conduction from the center to the wall.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moisan, M., Pelletier, J., Microwave Induced Plasmas, Plasma Technology, Vol. 4 (Elsevier Science Publishing, The Netherlands, 1992)Google Scholar
Ferreira, C.N., Moisan, M., NATO ASI Series B: Physics, vol. 302 (Plenum, New York, 1992)Google Scholar
Schluter, H., Shivarova, A., Phys. Rep. 443, 121 (2007)CrossRef
Geittner, P., Kuppers, D., Lydtin, H., Appl. Phys. Lett. 28, 645 (1976)CrossRef
Kuppers, D., Lydtin, H., Topics in Current Chemistry vol. 89 (Springer, Berlin, Heidelberg, 1980), p. 107Google Scholar
Palomares, J.M., Iordanova, E., van Veldhuizen, E.M., Baede, L., Gamero, A., Sola, A., van der Mullen, J.J.A.M., Spectrochim. Acta B 65, 225 (2010)CrossRef
de Vries, N., Iordanova, E., Hartgers, A., van Veldhuizen, E.M., van den Donker, M.J., van der Mullen, J.J.A.M., J. Phys. D: Appl. Phys. 39, 4194 (2006)CrossRef
Iordanova, E., de Vries, N., Guillemier, M., van der Mullen, J.J.A.M., J. Phys. D: Appl. Phys. 41, 015208 (2008)CrossRef
Iordanova, E., Palomares, J.M., Gamero, A., Sola, A., van der Mullen, J.J.A.M., J. Phys. D: Appl. Phys. 42, 0155208 (2008)CrossRef
Henriques, J., Tatarova, E., Dias, F.M., Ferreira, C.M., J. Appl. Phys. 90, 4921 (2001)CrossRef
Petrova, T., Benova, E., Petrov, G., Zhelyazkov, I., Phys. Rev. E 60, 875 (1999)CrossRef
Bol’shakov, A.A., Cruden, B.A., Sharma, S.P., Plasma Sources Sci. Technol. 13, 691 (2004)CrossRef
Touzeau, M., Vialle, M., Zellagui, A., Gousset, G., Lefebvre, M., Pealat, M., , J. Phys. D: Appl. Phys. 24, 41 (1991)CrossRef
Rousseau, A., Teboul, E., Sadeghi, N., Plasma Sources Sci. Technol. 13, 166 (2004)CrossRef
Williamson, J.M., Bletzinger, P., Ganguly, B.N., J. Phys. D: Appl. Phys. 37, 1658 (2004)CrossRef
Snyder, S.C., Reynolds, L.D., Lassahn, G.D., Fincke, J.R., Shaw, C.B., Kearney, R.J., Phys. Rev. E 47, 1997 (1993)CrossRef
Timmermans, E.A.H., Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1999
Jonkers, J., Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1998
Rousseau, A., Teboul, E., van de Sande, M.J., van der Mullen, J.J.A.M., Plasma Sources Sci. Technol. 11, 47 (2002)CrossRef
Carbone, E.A.D., Palomares, J.M., Hüubner, S., Iordanova, E., van der Mullen, J.J.A.M., JINST 7, C01016 (2012)CrossRef
van de Sande, M.J., Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 2002
de Vries, N., Palomares, J.M., van Harskamp, W.J., Iordanova, E., Kroesen, G.M.W., van der Mullen, J.J.A.M., J. Phys. D: Appl. Phys. 41, 105209 (2008)CrossRef
van de Sande, M.J., van der Mullen, J.J.A.M., J. Phys. D: Appl. Phys. 35, 1381 (2002)CrossRef
Pencheva, M., Petrova, T., Benova, E., Zhelyazkov, I., J. Phys.: Conf. Ser. 44, 110 (2006)
Pencheva, M., Petrov, G., Petrova, T., Benova, E., Vacuum 76, 409 (2004)CrossRef
Lemmon, E.W., Jacobsen, R.T., Int. J. Thermophys. 25, 21 (2004)CrossRef
van der Mullen, J.J.A.M., Jonkers, J., Spectrochim. Acta B 54, 1017 (1999)CrossRef
Milloy, H.B., Crompton, R.W., Rees, J.A., Robertson, A.G., Aust. J. Phys. 30, 61 (1977)CrossRef
Jonkers, J., van de Sande, M., Sola, A., Gamero, A., van der Mullen, J.J.A.M., Plasma Sources Sci. Technol. 12, 30 (2003)CrossRef
Martinez, E.C., Kabouzi, Y., Makasheva, K., Moisan, M., Phys. Rev. E 70, 066405 (2004)CrossRef