Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:28:40.609Z Has data issue: false hasContentIssue false

Quantitative interpretation of the excitonic splittings in aluminum nitride

Published online by Cambridge University Press:  28 January 2011

B. Gil*
Affiliation:
Groupe d'Étude des Semiconducteurs, UMR CNRS 5650, Université Montpellier 2, Case courrier 074, 34095 Montpellier Cedex 5, France
B. Guizal
Affiliation:
Groupe d'Étude des Semiconducteurs, UMR CNRS 5650, Université Montpellier 2, Case courrier 074, 34095 Montpellier Cedex 5, France
D. Felbacq
Affiliation:
Groupe d'Étude des Semiconducteurs, UMR CNRS 5650, Université Montpellier 2, Case courrier 074, 34095 Montpellier Cedex 5, France
G. Bouchitté
Affiliation:
Institut de Mathématiques de Toulon, Université de Toulon et du Var, 83957 La Garde Cedex, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We address the interpretation of the splitting between the ground state excitonic transition which indicates the energy of the lowest direct band gap in AlN bulk films and epilayers, and a 36–38 meV higher energy companion. We demonstrate that this splitting is consistent with the initial interpretation in terms of 1s–2s excitonic splitting by using a calculation of the exciton binding energy which includes mass anisotropy and anisotropy of the dielectric constant. Analytical expressions are proposed to compute the evolution of 1s and 2s excitonic energies using an anisotropy parameter. We show that the values of the dielectric constant that are required to fit the data are $\varepsilon _{\bot}$ 8.7and $\varepsilon _{\parallel}$ 10, values different from the couple of values $\varepsilon _{\bot}$ 7.33 and $\varepsilon _{\parallel}$ 8.45 erroneously obtained after a fitting procedure using a spherical description of the long range Coulomb interaction and the classical textbook n-2 spectrum of the excitonic eigenstates. Starting from now, our values are the recommended ones.

Type
Research Article
Copyright
© EDP Sciences, 2011

References

Onuma, T., Hazu, K., Uedono, A., Sota, T., Chichibu, S.F., Appl. Phys. Lett. 96, 061906 (2010) CrossRef
Feneberg, M., Leute, R.A.R., Neuschl, B., Thonke, K., Phys. Rev. B 82, 075208 (2010) CrossRef
Chen, L., Skromme, B.J., Dalmau, R.F., Schlesser, R., Sitar, Z., Chen, C., Sun, W., Yang, J., Khan, M.A., Nakarmi, M.L., Lin, J.Y., Jiang, H.-X., Appl. Phys. Lett. 85, 4334 (2004) CrossRef
Ikeda, H., Okamura, T., Matsukawa, K., Sota, T., Sugawara, M., Hoshi, T., Cantu, P., Sharma, R., Kaeding, J.F., Keller, S., Mishra, U.K., Kosaka, K., Asai, K., Sumiya, S., Shibata, T., Tanaka, M., Speck, J.S., DenBaars, S.P., Nakamura, S., Koyama, T., Onuma, T., Chichibu, S.F., J. Appl. Phys. 102, 123707 (2007) CrossRef
Prinz, G.M., Ladenburger, A., Schirra, M., Feneberg, M., Thonke, K., Sauer, R., Taniyasu, Y., Kasu, M., Makimoto, T., J. Appl. Phys. 101, 023511 (2007) CrossRef
Rossbach, G., Rösspischer, M., Schley, P., Gobsch, G., Werner, C., Cobet, C., Esser, N., Dadgar, A., Wienecke, M., Krost, A., Goldhahn, R., Phys. Stat. Sol. (b) 247, 1679 (2010) CrossRef
Gil, B., Phys. Rev. B 81, 205201 (2010) CrossRef
Gil, B., Briot, O., Aulombard, R.L., Phys. Rev. B 52, R17028 (1995) CrossRef
Gil, B., Lusson, A., Sallet, V., Said-Hassani, S.-A., Triboulet, R., Bigenwald, P., Jpn J. Appl. Phys. Lett. 40, L1089 (2001) CrossRef
B. Gil, in Stress effects on optical properties, Gallium nitride (GAN), Vol. II, edited by J.I. Pankove, T.D. Moutsakas (Academic Press, New York, 1999), pp. 209–274
Silveira, E., Freitas Jr, J.A.., O. Glembocki, G.A. Slack, L.J. Schowalter, Phys. Rev. B 71, 041201 (2005) CrossRef
Onuma, T., Shibata, T., Kosaka, K., Asai, K., Sumiya, S., Tanaka, M., Sota, T., Uedono, A., Chichibu, S.F., J. Appl. Phys. 105, 023529 (2009) CrossRef
Yamada, Y., Choi, K., Shin, S., Murotani, H., Taguchi, T., Okada, N., Amano, H., Appl. Phys. Lett. 92, 131912 (2005) CrossRef
Hopfield, J.J., Phys. Rev. 112, 1555 (1958) CrossRef
Gil, B., Clur, S., Briot, O., Solid State Commun. 104, 267 (1997) CrossRef
Gil, B., Briot, O., Phys. Rev. B 55, 2530 (1997) CrossRef
Baldereschi, A., Diaz, M.G., Nuovo Cimento B 68, 217 (1970) CrossRef
Fock, V.A., Z. Phys. 98, 145 (1935) CrossRef
Muljarov, E.A., Yablonskii, A.L., Tikhodeev, S.G., Bulatov, A.E., Birman, J.L., J. Math. Phys. 41, 6026 (2000) CrossRef
Suzuki, M., Uenoyama, T., Yanase, A., Phys. Rev. B 52, 8132 (1995) CrossRef
Majewski, J.A., Städele, M., Vogl, P., MRS Internet J. Nitride Semicond. Res. 1, 30 (1996) CrossRef
Kim, K., Lambrecht, W.R.L., Segall, B., van Schilfgaarde, M., Phys. Rev. B 56, 7363 (1997) CrossRef
Dugdale, D.J., Brand, R., Abram, R., Phys. Rev. B 61, 12933 (2000) CrossRef
Persson, C., Sernelius, Bo E., Ferreira da, A. Silva, R. Ahuja, B. Johansson, J. Phys.: Condens. Matter 13, 8915 (2001)
Rinke, P., Winkelnkemper, M., Qteish, A., Bimberg, D., Neugebauer, J., Scheffler, M., Phys. Rev. B 77, 075202 (2008) CrossRef
Kumagai, M., Chuang, S.L., Ando, H., Phys. Rev. B 57, 15303 (1998) CrossRef
Tischler, J.G., Freitas Jr, J.A.., Appl. Phys. Lett. 85, 1943 (2004) CrossRef
Moore, W.J., Freitas Jr, J.A.., R.T. Holm, O. Kovalenkov, V. Dmitriev, Appl. Phys. Lett. 86, 141912 (2005) CrossRef