Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T18:30:47.315Z Has data issue: false hasContentIssue false

Pulsed-laser ablation of polytetrafluoroethylene (PTFE) at various wavelengths

Published online by Cambridge University Press:  25 November 2003

N. Huber
Affiliation:
Applied Physics, Johannes-Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
J. Heitz*
Affiliation:
Applied Physics, Johannes-Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
D. Bäuerle
Affiliation:
Applied Physics, Johannes-Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
Get access

Abstract

The ablation rate of sintered polytetrafluoroethylene (PTFE) targets has been investigated as a function of wavelength within the range $193 \le \lambda \le 1064$ nm and pulse durations $5 \le \tau _{l} \le 25$ ns by means of various different lasers. In this parameter range, the apparent optical properties of targets and the depth of energy deposition are determined mainly by the scattering of the laser light. Therefore, measurements of the scattered light were performed for samples of various thicknesses by means of a modified UV-VIS spectrometer. For selected wavelengths, the angular distribution of the reflected and transmitted light intensity was determined. From these measurements, the coefficients for linear absorption, linear scattering and the scattering anisotropy were calculated using the inverse adding doubling algorithm. The results were tested by Monte Carlo simulation. With these coefficients the apparent optical penetration depths were estimated. These are about one order of magnitude larger than the ablation depths per pulse, which were determined from the weight loss of the targets. Laser deposition

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Heidelberg, 2000)
Blanchet, G.B., Fincher Jr, C.R.., C.L. Jackson, S.I. Shah, K.H. Gardner, Science 262, 719 (1993) CrossRef
Ueno, Y., Fujii, T., Kannari, F., Appl. Phys. Lett. 65, 1370 (1994) CrossRef
Jiang, W.B., Norton, M.G., Tsung, L., Dickinson, J.T., J. Mater. Res. 10, 1038 (1995) CrossRef
Zhang, Y., Katoh, T., Endo, A., J. Phys. Chem. B 104, 6212 (2000) CrossRef
Smausz, T., Kresz, N., Hopp, B., Appl. Surf. Sci. 177, 66 (2001) CrossRef
Li, S.T., Arenholz, E., Heitz, J., Bäuerle, D., Appl. Surf. Sci. 125, 17 (1998) CrossRef
Schwödiauer, R., Bauer-Gogonea, S., Bauer, S., Heitz, J., Arenholz, E., Bäuerle, D., Appl. Phys. Lett. 73, 2941 (1998) CrossRef
Huber, N., Heitz, J., Bäuerle, D., Schwödiauer, R., Bauer, S., Niino, H., Yabe, A., Appl. Phys. A 72, 581 (2001) CrossRef
Huber, N., Gruber, J., Arnold, N., Heitz, J., Bäuerle, D., Europhys. Lett. 51, 674 (2000) CrossRef
Henyey, L.G., Greenstein, J.L., Astrophys. 93, 70 (1941) CrossRef
Prahl, S.A., van Gemert, M.J.C., Welch, A.J., Appl. Opt. 32, 559 (1993) CrossRef
S.A. Prahl. in Optical-Thermal Response of Laser Irradiated Tissue, edited by A.J. Welch, M.J. van Gemert (Plenum Press, New York, 1995)
Goodfellow, Catalogue 2002
Ishimaru, A., Appl. Opt. 28, 2210 (1989) CrossRef
Paterson, M.S., Chance, B., Wilson, B.C., Appl. Opt. 28, 2331 (1989) CrossRef
Prahl, S.A., Keijzer, M., Jacques, S.L., Welch, A.J., SPIE Inst. Ser. IS 5, 102 (1989)
Piglmayer, K., Denk, R., Bäuerle, D., Appl. Phys. Lett. 80, 4693 (2002) CrossRef
Denk, R., Piglmayer, K., Bäuerle, D., Appl. Phys. A 76, 1 (2003) CrossRef
Küper, S., Stuke, M., Appl. Phys. Lett. 54, 4 (1989) CrossRef
Karabutov, A.A., Pelivanov, I.M., Podymova, N.B., Skipetrov, S.E., JETP Lett. 70, 183 (1999) CrossRef