Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T22:30:21.379Z Has data issue: false hasContentIssue false

Polarimetric scattering from a layer of spatially oriented metamaterial small spheroids

Published online by Cambridge University Press:  27 April 2005

H.-X. Ye
Affiliation:
Key Laboratory of Wave Scattering and Remote Sensing Information (Ministry of Education), Fudan University, Shanghai 200433, P.R. China
Y.-Q. Jin*
Affiliation:
Key Laboratory of Wave Scattering and Remote Sensing Information (Ministry of Education), Fudan University, Shanghai 200433, P.R. China
Get access

Abstract

Complex scattering amplitude functions of a small metamaterial spheroid are derived. The Mueller matrix solution for polarimetric bistatic scattering from a layer of random metamaterial small spheroids is then constructed. Bistatic scattering of metamaterial and dielectric spheroids are numerically calculated. Linearly co-polarized backscattering coefficients $\sigma _{hh} $ , $\sigma _{vv} $ and $\sigma _{hh} -\sigma _{vv} $ are presented to show the dependence upon frequency. The co-polarized and cross-polarized backscattering coefficients and polarizability degree of a layer of non-uniformly oriented metamaterial spheroids under illumination of an elliptic polarized plane wave are numerically simulated. Effects of metamaterial parameters on scattering pattern and scattering mechanism are interpreted. Numerical results indicate that the bistatic scattering of metamaterial particles is enhanced largely and demonstrates asymmetric directivity. Meanwhile, polarized difference of $\sigma _{hh} -\sigma _{vv} $ strongly varies with frequency due to constitutive dispersion of $\varepsilon (\omega )$ and $\mu (\omega )$ .

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Veselago, V.G., Soviet Phys. USPEKI 10, 509 (1968) CrossRef
Rotman, W., IEEE T. Antenn. Propag. 10, 82 (1962) CrossRef
J.B. Pendry, F.J. Garcia Vidal, Computational studies of photonic band gaps in metals, IEE Colloquium on Semiconductor Optical Microcavity Devices and Photonic Bandgaps (Digest No. 1996/267) Dec. 1996: 5/1 $\sim $ 5/6
Pendry, J.B. et al., IEEE T. Microw. Theory 47, 2075 (1999) CrossRef
Smith, D.R., Padilla, W.J., Phys. Rev. Lett. 84, 4184 (2000) CrossRef
Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000) CrossRef
Engheta, N., IEEE Antenn. Wireless Propag. Lett. 1, 10 (2002) CrossRef
Jin, Y.Q. Jin, M. Chang, Electromagnetics 23, 237 (2003) CrossRef
Y.Q. Jin, Electromagnetic Scattering Modelling for Quantitative Remote Sensing (World Scientific, Singapore, 1993), pp. 32–64
L. Tsang, J.A. Kong, R. Shin, Theory of Microwave Remote Sensing (John Willey, New York, 1982)
Jin, Y.Q., J. Quant. Spectrosc. Ra. 48, 295 (1992) CrossRef
I.V. Lindell, A.H. Sihvola et al., Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House Boston: London, 1994)
Ishimaru, A. et al., IEEE T. Antenn. Propag. 51, 2550 (2003) CrossRef
H.Y. Yao, L.W. Li, Performance analysis of metamaterials with two-dimensional isotropy, Proceedings of Annual Symposium of Singapore-MIT, 19-20 January 2004, 58 (https://dspace.mit.edu/handle/1721.1/3889)
M.Y. Koledintseva, D.J. Pommerenke, J.L. Drewniak, FDTD analysis of printed circuit boards containing wideband Lorentzian dielectric dispersive meida, IEEE International Symposium on Electromagnetic Compatibility, 19-23 Aug. 2002, Vol. 2, pp. 830–833.