Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:35:00.209Z Has data issue: false hasContentIssue false

Physico-chemical characterization of multilayer YIG thin film deposited by rf sputtering

Published online by Cambridge University Press:  26 February 2010

B. Abdel Samad*
Affiliation:
Laboratoire DIOM (Dispositifs et Instrumentation en Optoélectronique et Micro-ondes), Université de Lyon, 42023 Saint-Étienne, France
M.-F. Blanc-Mignon
Affiliation:
Laboratoire DIOM (Dispositifs et Instrumentation en Optoélectronique et Micro-ondes), Université de Lyon, 42023 Saint-Étienne, France
M. Roumie
Affiliation:
Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, Airport Road, P.O. Box 11-8281, , Lebanese Atomic Energy Commission, National Council for Scientific Research, Airport Road, P.O. Box 11-8281, Beirut, Lebanon
A. Siblini
Affiliation:
Laboratoire DIOM (Dispositifs et Instrumentation en Optoélectronique et Micro-ondes), Université de Lyon, 42023 Saint-Étienne, France
J. P. Chatelon
Affiliation:
Laboratoire DIOM (Dispositifs et Instrumentation en Optoélectronique et Micro-ondes), Université de Lyon, 42023 Saint-Étienne, France
M. Korek
Affiliation:
Beirut Arab University, P.O. Box 11, -5020, Beirut, Lebanon
Get access

Abstract

Yttrium iron garnet (YIG) film made as a magneto-optical medium suffers from the problem of crack formation, caused by the heating process. YIG thin film is deposited by radio frequency rf magnetron sputtering; the obtained layer is amorphous and it needs annealing to be crystallized. After heat-treatment at 740 C of the sample realized on quartz substrate, we observe cracks on the entire film surface. This is due to the large difference between the thermal expansion coefficient (5.5 ×10-7 K-1 for quartz and 10 ×10-6 K-1 for YIG). In this paper we present a new fabrication method to reduce this problem, we make a multilayer to obtain at the end a uniformly unique layer with excellent crystalline structure. Such films have the possibility to reach a thickness of 500 nm. YIG films have been studied by Rutherford backscattering spectrometry (RBS), optic ellipsometry and the scan electron microscope. The RBS spectra were collected in channelling geometry with incident particles energy 2 MeV and 3.5 MeV. The thickness and the stoichiometric value of the thin films have been evaluated. Simulation of all spectra indicates a constant composition. Ellipsometry method is well adapted to model the thin film structure layers, and to measure the thickness of the film and the complex index of refraction. The theoretical ellipsometric value of the index of refraction is (2.22) while the experimental value is ranging from 2.2 to 2.3 for a wavelength of 1550 nm.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Furuya, A., Yoshikawa, H., Tanabe, T., Yamemoto, M., Tailhades, P., Bouet, L., Despax, C., Presmanes, L., Rousset, A., J. Appl. Phys. 85, 5106 (1999) CrossRef
Inoue, M., Fujii, T., J. Appl. Phys. 81, 8 (1997)
Boudiar, T., Payet-Gervy, B., Blanc-Mignon, M.-F., Rousseau, J.-J., Le Berre, M., Joisten, H., J. Magn. Magn. Mater. 284, 77 (2004) CrossRef
Takaji, T., Fujino, M., Fujii, T., J. Cryst. Growth 237, 725 (2002) CrossRef
Higuchi, S., Ueda, K., Yahiro, F., Nakata, Y., Uetsuhara, H., Okada, T., Maeda, M., IEEE Trans. Magn. 37, 2451 (2001) CrossRef
Furuya, A., Yoshikawa, H., Tanabe, T., Yamemoto, M., Tailhades, P., Bouet, L., Despax, C., Presmanes, L., Rousset, A., J. Appl. Phys. 85, 5106 (1999) CrossRef
Deschanvres, J.L., Cenda, D., J. Magn. Magn. Mater. 242, 1172 (2002) CrossRef
Boudiar, T., Capraro, S., Rouiller, T., Blanc-Mignon, M.-F., Gervy, B.P., Le Berre, M., Rousseau, J.-J., Phys. Stat. Sol. C 1, 3347 (2004) CrossRef
Lemelle, L., Abel, F., Cohen, C., Guyot, F., American Mineralogist 87, 327 (2002) CrossRef
R. French, R. Wheland, D. Jones, J. Hilfiker, R.A. Synowicki, F. Zumsteg, J. Feldman, A. Feiring, Optical Microlithography XIII, Proc. SPIE 4000, edited by C.J. Progler (2000), p. 1491