Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:07:53.277Z Has data issue: false hasContentIssue false

Photovoltaic performance improvement in planar P3HT/CdS solar cells induced by structural, optical and electrical property modification in thermal annealed P3HT thin films

Published online by Cambridge University Press:  05 July 2013

Hugo Jorge Cortina-Marrero
Affiliation:
Centro de Investigación en Energía, UNAM. Privada Xochicalco S/N, Temixco, Morelos 62580, Mexico
Claudia Martínez-Alonso
Affiliation:
Centro de Investigación en Energía, UNAM. Privada Xochicalco S/N, Temixco, Morelos 62580, Mexico
Liliana Hechavarría-Difur
Affiliation:
Universidad del Istmo, Ciudad Universitaria, Bo. Santa Cruz Tagolaba, Santo Domingo Tehuantepec, Oaxaca 70760, Mexico
Hailin Hu*
Affiliation:
Centro de Investigación en Energía, UNAM. Privada Xochicalco S/N, Temixco, Morelos 62580, Mexico
*
Get access

Abstract

Bilayer hybrid solar cells were prepared by solution deposition of CdS thin films on conductive glass substrates (ITO), followed by spin-coating or drop-casting poly (3-hexylthiophene) (P3HT) solution on a CdS surface. After a slow drying process, the P3HT films of different thicknesses (from 100 to 725 nm) were annealed at temperatures (T1) from 110 to 190 °C, called pre-metal contact annealing. Then carbon paint was collocated on top of P3HT and gold was evaporated. The whole structure was annealed for the second time, called post-metal contact annealing, at temperature (T2) between 110 and 190 °C. The continuous increase of the (1 0 0) crystalline plane and the optical absorption coefficient of P3HT films with annealing temperatures indicates the improvement of molecular order inside the polymer films induced by the thermal annealing process. The better ordered P3HT films lead to lower series resistance and higher fill factor in the corresponding solar cells, suggesting the enlargement of charge carrier mobility in annealed P3HT films. On the other hand, the photovoltaic performance is also affected by T2 temperature; a low T2 improves the ohmic contact between P3HT and the metal contact to benefit the charge carrier extraction, whereas a high T2 may deteriorate that union. The same observation was obtained in CdS/P3HT solar cells with P3HT films of different thicknesses. The best energy conversion efficiency of 0.44% was obtained in CdS/P3HT cells with 305 nm thick P3HT annealed at T1 = 190 °C and T2 = 110 °C for 10 min each.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reyes-Reyes, M., Kim, K., Dewald, J., López-Sandoval, R., Avadhanula, A., Curran, S., Carroll, D.L., Org. Lett. 7, 5749 (2005)CrossRef
Northrup, J.E., Phys. Rev. B 76, 245202 (2007)CrossRef
Günes, S., Neugebauer, H., Sariciftci, N.S., Chem. Rev. 107, 1324 (2007)CrossRef
Huynh, W.U., Dittmer, J.J., Alivisatos, A.P., Science 295, 2425 (2002)CrossRef
Liao, H.-C., Chen, S.-Y., Liu, D.-M., Macromolecules 42, 6558 (2009)CrossRef
Mayer, A.C., Scully, S.R., Hardin, B.E., Rowell, M.W., McGehee, M.D., Mat. Today 10, 28 (2007)CrossRef
Mihailetchi, V.D., Wildeman, J., Blom, P.W.M., Phys. Rev. Lett. 94, 126602 (2005)CrossRef
Mihailetchi, V.D., Xie, H., de Boer, B., Koster, L.J.A., Blom, P.W.M., Adv. Funct. Mater. 16, 699 (2006)CrossRef
Mihailetchi, V.D., Xie, H., de Boer, B., Popescu, L.M., Hummelen, J.C., Blom, P.W.M., Koster, L.J.A., Appl. Phys. Lett. 89, 012107 (2006)CrossRef
Brabec, C.J., Sariciftci, N.S., Hummelen, J.C., Adv. Funct. Mater. 11, 15 (2001)3.0.CO;2-A>CrossRef
Thummalakunta, L.N.S.A., Yong, C.H., Ananthanarayanan, K., Luther, J., Org. Electr. 13, 2008 (2012)CrossRef
Kekuda, D., Huang, J.-H., Ho, K.-C., Chu, C.-W., J. Phys. Chem. C 114, 2764 (2010)CrossRef
Janssena, G., Aguirrea, A., Goovaertsa, E., Vanlaekea, P., Poortmansa, J., Mancaa, J., Eur. Phys. J. Appl. Phys. 37, 287 (2007)CrossRef
Rujisamphan, N., Deng, F., Murray, R.E., Ni, C., Shah, S.I., Solar Energy Mater. Solar Cells 109, 56 (2013)CrossRef
Zheng, Y., Wu, R., Shi, W., Guan, Z., Yu, J., Solar Energy Mater. Solar Cells 111, 200 (2013)CrossRef
Huang, Y.-C., Chia, H.-C., Chuang, C.-M., Tsao, C.-S., Chen, C.-Y., Su, W.-F., Solar Energy Mater. Solar Cells 114, 24 (2013)CrossRef
Zhao, Z., Rice, L., Efstathiadis, H., Haldar, P., Microel. Reliab. 53, 123 (2013)CrossRef
Ho, C.-S., Huang, E-L., Hsu, W.-C., Lee, C.-S., Lai, Y.-N., Yao, E.-P., Wang, C.-W., Synth. Met. 162, 1164 (2012)CrossRef
Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A.J., Adv. Funct. Mater. 15, 1617 (2005)CrossRef
Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., Nat. Mater. 4, 864 (2005)CrossRef
Li, G., Shrotriya, V., Yao, Y., Yang, Y., J. Appl. Phys. 98, 043704 (2005)CrossRef
Li, G., Yao, Y., Yang, H., Shrotriya, V., Yang, G., Yang, Y., Adv. Funct. Mater. 17, 1636 (2007)CrossRef
Kim, Y., Choulis, S.A., Nelson, J., Bradley, D.D.C., Cook, S., Durrant, J.R., Appl. Phys. Lett. 86, 063502 (2005)CrossRef
Sharma, G.D., Suresh, P., Sharma, S.S., Vijay, Y.K., Mikroyannidis, J.A., Appl. Mater. Int. 2, 504 (2010)CrossRef
Vanlaeke, P., Swinnen, A., Haeldermans, I., Vanhoyland, G., Aernouts, T., Cheyns, D., Deibel, C., Haen, J.D., Heremans, P., Poortmans, J., Manca, J.V., Solar Energy Mater. Solar Cells 90, 2150 (2006)CrossRef
Hugger, S., Thomann, R., Heinzel, T., Thurn-Albercht, T., Colloid Polym. Sci. 282, 932 (2004)
Cortina, H., Pineda, E., Campos, J., Nicho, M.E., Hu, H., Eur. Phys. J. Appl. Phys. 55, 30901 (2011)CrossRef
Nair, P.K., Nair, M.T.S., Arenas, O.L., Peña, Y., Castillo, A., Ayala, I.T., Gómez-Daza, O., Sánchez, A., Campos, J., Hu, H., Suárez, R., Rincón, M., Solar Energy Mater. Solar Cells 52, 313 (1998)CrossRef
Cortina-Marrero, H., Nair, P.K., Hu, H., submitted
Schroder, D.K., Semiconductor Material and Device Characterization, 2nd edn. (John Wiley & Sons, Inc, 1998)Google Scholar
Arenas, M.C., Mendoza, N., Cortina, H., Nicho, M.E., Hu, H., Solar Energy Mater. Solar Cells 94, 29 (2010)CrossRef