Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T04:52:35.796Z Has data issue: false hasContentIssue false

Phase resolved cross-correlation spectroscopy on surface barrier discharges in air at atmospheric pressure

Published online by Cambridge University Press:  21 July 2011

R. Brandenburg*
Affiliation:
Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
H. Grosch
Affiliation:
Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
T. Hoder
Affiliation:
Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
K.-D. Weltmann
Affiliation:
Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
*
a e-mail: [email protected]
Get access

Abstract

Microdischarges in a surface barrier discharge with special asymmetric needle-needle arrangement were investigated by means of cross-correlation spectroscopy (with sub-ns and sub-mm resolution) and an intensified CCD camera equipped with a far field microscope. The surface barrier discharge was driven at conditions (overvoltage) resulting in several microdischarges per half period of the applied sinusoidal voltage. At these conditions and in this arrangement regular patterns of microdischarges between the two electrodes points are formed due to local charging of the dielectric surface. The cross-correlation spectroscopy setup enables the recording of microdischarge development for different phases of the applied voltage. Distinct differences in the microdischarge development between the subsequent phase channels in the positive half period can be observed, while the first channel shows similar behavior as in the single-microdischarge mode which was conducted recently.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, K.H., Kogelschatz, U., Schoenbach, K.H., Parker, R.J. (eds.), Non-Equilibrium Air Plasmas at Atmospheric Pressure (Institute of Physics Publishing, New York, 2004)Google Scholar
Gibalov, V.I., Pietsch, G.J., J. Phys. D: Appl. Phys. 33, 2618 (2000), DOI: 10.1088/0022-3727/33/20/315CrossRef
Grosch, H., Hoder, T., Weltmann, K.-D, Brandenburg, R., Eur. Phys. J. D 60, 547 (2010)CrossRef
Wagner, H.-E. et al., in Low Temperature Plasmas, edited by Hippler, R., Kersten, H., Schmidt, M., Schoenbach, K.-H., Vol. 1, 2nd edn. (Wiley-VCH, Weinheim, 2008), pp. 271306Google Scholar
Becker, W., Advanced Time-Correlated Single Photon Counting Techniques (Springer-Verlag, Berlin, 2005)CrossRefGoogle Scholar
Kozlov, K.V., Wagner, H.-E., Brandenburg, R., Michel, P., Phys. D: Appl. Phys. 34, 3164 (2001), DOI: 10.1088/0022-3727/34/21/309CrossRef
Brandenburg, R., Hoder, T., Wagner, H.-E., IEEE Trans. Plasma Sci. 36, 1318 (2008), DOI: 10.1109/94.407017CrossRef
Hoder, T., Sira, M., Kozlov, K.V., Wagner, H.-E., Contrib. Plasms Phys. 49, 381 (2009), DOI: 10.1088/0022-3727/42/4/049802CrossRef
Celestin, S., Canes-Boussard, G., Guaitella, O., Bourdon, A., Rousseau, A., J. Phys. D: Appl. Phys. 41, 205214 (2008), DOI: 10.1088/0022-3727/41/20/205214CrossRef
Hoder, T., Brandenburg, R., Basner, R., Weltmann, K.-D., Kozlov, K.V., Wagner, H.-E., J. Phys. D: Appl. Phys. 43, 8 (2010), DOI: 10.1088/0022-3727/43/12/124009CrossRef
Opaits, D.F., Shneider, M.N., Miles, R.B., Likhanskii, A.V., Macheret, S.O., Phys. Plasmas 15, 073505 (2008), DOI: 10.1063/1.2955767CrossRef
Deng, J., Matsuoka, S., Kumada, A., Hidaka, K., J. Phys. D: Appl. Phys. 43, 495203 (2010), DOI: 10.1088/0022-3727/43/49/495203CrossRef
Brandenburg, R., Grosch, H., Hoder, T., Weltmann, K.-D., in Proc. of 37th Conf. on Plasma Physics of the European Physical Society (EPS), Dublin, Ireland, 2010
Kumada, A., Okabe, S., Hidaka, K., J. Phys. D: Appl. Phys. 42, 095209 (2009), DOI: 10.1088/0022-3727/42/9/095209CrossRef
Zhu, Y., Takada, T., Sakai, K., Tu, D., J. Phys. D: Appl. Phys. 29, 2892 (1996), DOI: 10.1088/0022-3727/29/11/024CrossRef
Boeuf, J.P., Lagmich, Y., Pitchford, L.C., J. Appl. Phys. 106, 23115 (2009), DOI: 10.1063/1.3183960CrossRef
Allegraud, K., Guaitella, O., Rousseau, A., J. Phys. D: Appl. Phys. 40, 7698 (2007), DOI: 10.1088/0022-3727/40/24/017CrossRef
Yurgelenas, Yu.V., Wagner, H.-E., J. Phys. D: Appl. Phys. 39, 4031 (2006), DOI: 10.1088/0022-3727/39/18/015CrossRef
Niemeyer, L., IEEE Trans. Dielect. Electr. Insul. 4, 510 (1995), DOI: 10.1109/94.407017CrossRef
Brandenburg, R., Wagner, H.-E., Morozov, A.M., Kozlov, K.V., J. Phys. D: Appl. Phys. 38, 1649 (2005), DOI: 10.1088/0022-3727/38/11/003CrossRef
Hoder, T., Sira, M., Kozlov, K.V., Wagner, H.-E., J. Phys. D: Appl. Phys. 41, 9 (2008), DOI: 10.1088/0022-3727/41/3/035212CrossRef