Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T06:02:12.619Z Has data issue: false hasContentIssue false

Oxygen in GaAs and its relation to the EL3 defect investigated by TSC and PICTS

Published online by Cambridge University Press:  15 July 2004

A. Wohlrab*
Affiliation:
Institut für Experimentelle Physik, TU Bergakademie Freiberg, Silbermannstr. 1, Freiberg, 09599, Germany
B. Gründig-Wendrock
Affiliation:
Institut für Experimentelle Physik, TU Bergakademie Freiberg, Silbermannstr. 1, Freiberg, 09599, Germany
M. Jurisch
Affiliation:
Freiberger Compound Materials GmbH, Am Junger Löwe Schacht 5, Freiberg, 09599, Germany
F.-M. Kiessling
Affiliation:
Institut für Kristallzüchtung, Max-Born-Str. 2, Berlin, 12489, Germany
J. R. Niklas
Affiliation:
Institut für Experimentelle Physik, TU Bergakademie Freiberg, Silbermannstr. 1, Freiberg, 09599, Germany
Get access

Abstract

Thermally stimulated current (TSC) and photo induced current transient spectroscopy (PICTS) were used to investigate deep traps in oxygen-rich medium resistivity GaAs. We observed an abnormal behaviour of the TSC signal at a temperature of about 200 K, where the TSC current is lower than the dark current. This results in a negative peak occurring in the temperature range where the signal of the well known EL3 defect in undoped semi-insulating GaAs is present. For verification, comparative PICTS-measurements were performed, which exhibit the same negative peak at similar temperatures. The activation energy for this negative peak was determined to be ~ 0.6 eV (TSC). This is in good agreement with published values for the EL3 ranging from 0.56 to 0.68 eV. Furthermore, we illustrate that the depth of the peak increases with increasing oxygen content. Our results support the assumption, that oxygen on an arsenic site – the so called off centre oxygen oc-OAs – should be the origin of the EL3.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Skowronski, M. et al., Appl. Phys. Lett. 57, 902 (1990) CrossRef
Schneider, J. et al., Appl. Phys. Lett. 54, 1442 (1989) CrossRef
Lin, A. L. et al., J. Appl. Phys. 47, 1852 (1976) CrossRef
Lagowski, J. et al., Appl. Phys. Lett. 44, 336 (1984) CrossRef
Kaufmann, U. et al., Phys. Rev. B 43, 12106 (1991) CrossRef
Skowronski, M., Mater. Sci. Forum 83–87, 377 (1992) CrossRef
Alt, H. Ch., Semicond. Sci. Technol. 6, 121 (1991) CrossRef
Neild, S. T. et al., Appl. Phys. Lett. 58, 859 (1991) CrossRef
Lisker, M. et al., Inst. Phys. Conf. Ser 160, 413 (1998)
Alt, H. Ch. et al., Jpn J. Appl. Phys. 38, 6611 (1999) CrossRef
Skowronski, M. et al., J. Appl. Phys. 69, 7825 (1991) CrossRef
P. Blood, J. W. Orton, The electrical Characterization of Semiconductors: Majority Carriers and Electron States, edited by N. H. March (Academic Press, London, 1992)
J. Korb et al., J. Cryst. Growth 198/199, 343 (1999)
Siegel, W. et al., J. Appl. Phys. 81, 3155 (1997) CrossRef
Z. Q.-Fang et al., J. Electron. Mater. 27, 62 (1998) CrossRef