Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T22:37:03.503Z Has data issue: false hasContentIssue false

Orientation control of rhomboedral PZT thin filmson Pt/Ti/SiO2/Si substrates

Published online by Cambridge University Press:  15 September 2001

B. Vilquin*
Affiliation:
Laboratoire CRISMAT/ISMRA et Université de Caen (CNRS UMR 6508), 6 boulevard du Maréchal Juin, 14050 Caen Cedex, France
R. Bouregba
Affiliation:
Laboratoire CRISMAT/ISMRA et Université de Caen (CNRS UMR 6508), 6 boulevard du Maréchal Juin, 14050 Caen Cedex, France
G. Poullain
Affiliation:
Laboratoire CRISMAT/ISMRA et Université de Caen (CNRS UMR 6508), 6 boulevard du Maréchal Juin, 14050 Caen Cedex, France
M. Hervieu
Affiliation:
Laboratoire CRISMAT/ISMRA et Université de Caen (CNRS UMR 6508), 6 boulevard du Maréchal Juin, 14050 Caen Cedex, France
H. Murray
Affiliation:
Laboratoire CRISMAT/ISMRA et Université de Caen (CNRS UMR 6508), 6 boulevard du Maréchal Juin, 14050 Caen Cedex, France
Get access

Abstract

Highly (111)- and (001)-oriented rhomboedral PZT thin films have been grown at 500 °C onplatinized silicon substrates by in situ RF magnetron sputtering. Crystallization of the perovskitephase was possible provided that a thin TiOx buffer layer was deposited prior to the PZT. Control ofPZT films orientation is demonstrated by changing the $\rm O_2/(Ar+O_2)$ ratio in the plasma gasduring the TiOx sputtering and its consequences on electrical properties of the ferroelectric samplesare presented. The structural properties of the TiOx buffer layer were studied by means oftransmission electronic microscopy in order to understand the relation between the TiOx seeding andthe orientation control of the PZT film.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Scott, J.F., Araujo, C.A., Science 246, 1400 (1989). CrossRefPubMed
Swartz, S.L., Wood, V.E., Cond. Mat. News 1, 4 (1992).
Takayama, R., Tomita, Y., J. Appl. Phys. 65, 1666 (1989). CrossRef
Sreenivas, K., Sayer, M., J. Appl. Phys. 64, 1484 (1988). CrossRef
Foster, C.M., Bai, G.R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L.A., Carr, E., Amano, J., J. Appl. Phys. 81, 2349 (1997). CrossRef
Du, X., Zheng, J., Belegundu, U., Uchino, K., Appl. Phys. Lett. 72, 2421 (1998). CrossRef
Jenkins, D.F.L., Clegg, W.W., Velu, G., Cattan, E., Remiens, D., Ferroelectrics 224, 259 (1999). CrossRef
Aoki, K., Fukuda, Y., Numuta, K., Nishimura, A., Jpn J. Appl. Phys. 33, 5155 (1994). CrossRef
Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., Scalese, S., Naumovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H.J., Patthey, L., Bullock, E.L., J. Appl. Phys. 83, 3835 (1998). CrossRef
Huang, Z., Zhang, Q., Whatmore, R.W., J. Mater. Sci. Lett. 17, 1157 (1998). CrossRef
Bouregba, R., Poullain, G., Vilquin, B., Murray, H., Mater. Res. Bull. 35, 1381 (2000). CrossRef
Magneli, A., Acta Cryst. 6, 495 (1953).
Anderson, S., Acta Scand. 14, 1161 (1960).
Iwasaki, H., Bright, N.F.M., Rowland, J.F., J. Less-Common Met. 17, 99 (1969). CrossRef
Larsen, P.K., Dormans, G.J.M., Taylor, D.J., van Veldhoven, P.J., J. Appl. Phys. 76, 2405 (1994). CrossRef