Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T06:15:31.419Z Has data issue: false hasContentIssue false

Organic field-effect transistor with octadecyltrichlorosilane (OTS) self-assembled monolayers on gate oxide: effect of OTS quality

Published online by Cambridge University Press:  23 November 2011

M. Devynck*
Affiliation:
Université de Bordeaux, Laboratoire d’Intégration du Matériau au Système (IMS), CNRS UMR 5218, ENSCBP, 16 av. Pey Berland, 33607 Pessac Cedex, France
P. Tardy
Affiliation:
Université de Bordeaux, Laboratoire d’Intégration du Matériau au Système (IMS), CNRS UMR 5218, ENSCBP, 16 av. Pey Berland, 33607 Pessac Cedex, France
G. Wantz
Affiliation:
Université de Bordeaux, Laboratoire d’Intégration du Matériau au Système (IMS), CNRS UMR 5218, ENSCBP, 16 av. Pey Berland, 33607 Pessac Cedex, France
Y. Nicolas
Affiliation:
Institut des Sciences Moléculaires (ISM), UMR 5255, Université Bordeaux, Bât. A12, 351 cours de la Libération, 33405 Talence Cedex, France
L. Hirsch
Affiliation:
Université de Bordeaux, Laboratoire d’Intégration du Matériau au Système (IMS), CNRS UMR 5218, ENSCBP, 16 av. Pey Berland, 33607 Pessac Cedex, France
*
Get access

Abstract

The effect of OTS (octadecyltrichlorosilane) Self-Assembled Monolayer (SAM) grafted on SiO2 gate dielectric of pentacene-based OFETs (organic field-effect transistors) is investigated. A significant improvement of the charge mobility (μ), up to 0.74 cm2/V s, is reached thanks to OTS treatment. However, in spite of improved performances, several drawbacks, such as an increase in mobility dispersion, substantial hysteresis in IDS-VG characteristics and high threshold voltages (VT), are observed. Changing solvent and deposition method turns out to have no significant effect on the mobility dispersion. A more accurate approach on the evolution of the mobility and the threshold voltage dispersion with OTS storage time highlights the effect of the OTS solution aging. Even if no difference is evidenced in the surface energy and roughness of the OTS layer, electrical characteristics exhibit considerable deterioration with OTS solution storage time. Using an “aged” OTS solution, opened under air, kept under argon and distilled before use, results in an increase of the IDS-VG hysteresis as well as in VT and in mobility dispersion. In comparison, fresh-OTS-based OFETs present a very low hysteresis, a threshold voltage close to 0 and a much lower mobility dispersion. It is demonstrated that aged OTS solutions contain impurities that are not removed by distillation process, which leads to a less densely packed layer causing interfacial charge traps thus deteriorated performances.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sheraw, C.D., Zhou, L., Huang, J.R., Gundlach, D.J., Jackson, T.N., Kane, M.G., Hill, I.G., Hammond, M.S., Campi, J., Greening, B.K., Francl, J., West, J., Appl. Phys. Lett. 80, 1088 (2002)CrossRef
Yang, H., Shin, T.J., Ling, M.-M., Cho, K., Ryu, C.Y., Bao, Z., J. Am. Chem. Soc. 127, 11542 (2005)CrossRef
Shankar, K., Jackson, T.N., J. Mater. Res. 19, 2003 (2004)CrossRef
Kato, Y., Iba, S., Teramoto, R., Sekitani, T., Someya, T., Kawaguchi, H., Sakurai, T., Appl. Phys. Lett. 84, 3789 (2004)CrossRef
Gundlach, D.J., Jackson, T.N., Schlom, D.G., Nelson, S.F., Appl. Phys. Lett. 74, 3302 (1999)CrossRef
Kiguchi, M., Nakayama, M., Shimada, T., Saiki, K., Phys. Rev. B 71, 1 (2005)
Dinelli, F., Murgia, M., Levy, P., Cavallini, M., Biscarini, F., De Leeuw, D., Phys. Rev. Lett. 92, 90 (2004)
Horowitz, G., Lang, P., Kalb, W., Mottaghi, M. in Proc. of the Int. Sympos. in Super-Functionality Organic Devices, IPAP Conf. Series, Chiba University, Japan, 2005, vol. 6, pp. 125129
Horowitz, G., Hajlaoui, M.E., Hajlaoui, R., J. Appl. Phys. 87, 4456 (2000)CrossRef
Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C., Mohialdin Khaffaf, S., Adv. Funct. Mater. 13, 199 (2003)CrossRef
Steudel, S., De Vusser, S., De Jonge, S., Janssen, D., Verlaak, S., Genoe, J., Heremans, P., Appl. Phys. Lett. 85, 4400 (2004)CrossRef
Fritz, S.E., Kelley, T.W., Frisbie, C.D., J. Phys. Chem. B 109, 10574 (2005)CrossRef
Horowitz, G., Hajlaoui, M.E., Synt. Met. 122, 185 (2001)CrossRef
Yoshikawa, G., Sadowski, J.T., Al-Mahboob, A., Fujikawa, Y., Sakurai, T., Tsuruma, Y., Ikeda, S., Saiki, K., Appl. Phys. Lett. 90, 251906 (2007)CrossRef
Wo, S., Wang, B., Zhou, H., Wang, Y., Bessette, J., Headrick, R.L., Mayer, A.C., Malliaras, G.G., Kazimirov, A., J. Appl. Phys. 100, 093504 (2006)CrossRef
Kazimirov, A., Malliaras, G.G., Mayer, A.C., Ruiz, R., Headrick, R.L., Org. Electron. 5, 257 (2004)
Ruiz, R., Papadimitratos, A., Mayer, A.C., Malliaras, G.G., Adv. Mater. 17, 1795 (2005)CrossRef
Ruiz, R., Nickel, B., Koch, N., Feldman, L., Haglund, R., Kahn, A., Scoles, G., Phys. Rev. B 67, 1 (2003)CrossRef
Seo, H., Jang, Y., Zhang, Y., Syedabthagir, P., Choi, J., Org. Electron. 9, 432 (2008)CrossRef
Goldmann, C., Gundlach, D.J., Batlogg, B., Appl. Phys. Lett. 88, 063501 (2006)CrossRef
Ohnuki, H., Changhai, W., Izumi, M., Tatewaki, Y., Ikegami, K., Thin Solid Films 516, 2747 (2008)CrossRef
Collet, J., Vuillaume, D., Appl. Phys. Lett. 73, 2681 (1998)CrossRef
Virkar, A., Mannsfeld, S., Oh, J.H., Toney, M.F., Tan, Y.H., Liu, G., Scott, J.C., Miller, R., Bao, Z., Adv. Funct. Mater. 19, 1962 (2009)CrossRef
Kelley, T.W., Boardman, L.D., Dunbar, T.D., Muyres, D.V., Pellerite, M.J., Smith, T.P., J. Phys. Chem. B 107, 5877 (2003)CrossRef
Parikh, A.N., Allara, D.L., Azouz, I.B., Rondelez, F., J. Phys. Chem. 98, 7577 (1994)CrossRef
Ito, Y., Virkar, A.A., Mannsfeld, S., Oh, J.H., Toney, M., Locklin, J., Bao, Z., J. Am. Chem. Soc. 131, 9396 (2009)CrossRef
Chen, L.-J., Tsai, Y.-H., Liu, C.-S., Chiou, D.-R., Yeh, M.-C., Chem. Phys. Lett. 346, 241 (2001)CrossRef
Pillai, S., Pai, R.K., Ultramicroscopy 109, 161 (2009)CrossRef
Bunker, B.C., Carpick, R.W., Assink, R.A., Thomas, M.L., Hankins, M.G., Voigt, J.A., Sipola, D., de Boer, M.P., Gulley, G.L., Langmuir 16, 7742 (2000)CrossRef
Wang, Y., Lieberman, M., Langmuir 19, 1159 (2003)CrossRef
Nie, H.-Y., Walzak, M.J., McIntyre, N.S., J. Phys. Chem. B 110, 21101 (2006)CrossRef
Lee, H.S., Kim, D.H., Cho, J.H., Hwang, M., Jang, Y., Cho, K., J. Am. Chem. Soc. 130, 10556 (2008)CrossRef
Aswal, D.K., Lenfant, S., Guerin, D., Yakhmi, J.V., Vuillaume, D., Anal. Chim. Acta 568, 84 (2006)CrossRef
Gu, G., Kane, M.G., Doty, J.E., Firester, A.H., Appl. Phys. Lett. 87, 243512 (2005)CrossRef
Katz, H.E., Hong, X.M., Dodabalapur, A., Sarpeshkar, R., J. Appl. Phys. 91, 1572 (2002)CrossRef
Lin-Vien, D., Colthup, W.N., Fateley, W.G., Grasselli, J.G., The Handbook of Infrared and Raman Frequencies of Organic Molecules (John Wiley & Sons, New York, 1991)Google Scholar